Skip to main content

The \(g-2\) Experiments

  • Chapter
  • First Online:
The Anomalous Magnetic Moment of the Muon

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 274))

  • 1384 Accesses

Abstract

The main concepts and early results from the CERN muon storage ring experiment have been summarized in Bailey et al. (Nuovo Cim A, 9:369, 1972, [1]). There are a number of excellent reviews on this subject and I am following in parts the ones of Combley, Farley and Picasso (Phys Rep, 14C:1, 1974, [2], Quantum Electrodynamics, World Scientific, Singapore, p 479, 1990, [3]) and of Vernon Hughes (The anomalous magnetic moment of the muon, 2001, [4]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Formulas like (6.1) presented in this first overview will be derived below.

  2. 2.

    L is a matrix operator acting on four–vectors. The \(\cdot \) operation at the right of the spacial submatrix means forming a scalar product with the spatial part of the vector on which L acts.

  3. 3.

    Note that \(\mathrm{d}\, \gamma =\gamma ^3 \,\mathbf {v} \cdot \mathrm{d}\mathbf {v}/c^2\) and the equation of motion implies

    $$\begin{aligned} \mathbf {v} \cdot \frac{\mathrm{d}\, (\gamma m\mathbf {v})}{\mathrm{d}t}=m\gamma ^3 \mathbf {v} \cdot \frac{\mathrm{d}\mathbf {v}}{\mathrm{d}t}=e \,\mathbf {v} \cdot \mathbf {E}\,, \end{aligned}$$

    as \(\mathbf {v} \cdot (\mathbf {v} \times \mathbf {B})\equiv 0\). This has been used in obtaining (6.35).

  4. 4.

    Magnetic focusing using an inhomogeneous field \(B_z=B_0\,(r_0/r)^n\), which by Maxwell’s equation \(\nabla \times \mathbf {B}=0\) implies \(B_r\simeq -n/r_0\,B_0\,z\) for \(r \simeq r_0\), leads to identical betatron oscillation equations (6.23) as electrostatic focusing.

  5. 5.

    The pitch frequency here should not to be confused with the proton precession frequency \(\omega _p\) appearing in (6.7).

  6. 6.

    Remembering the normalization: the magnetic and electric dipole moments are given by \(\mu =\frac{g}{2}\,\frac{e\hbar }{2mc}\) and \(d=\frac{\eta }{2}\,\frac{e\hbar }{2mc}\), respectively.

  7. 7.

    Only the recently established phenomenon of neutrino oscillations proves that lepton number in fact is not a perfect quantum number. This requires that neutrinos must have tiny masses and this requires that right–handed neutrinos (\(\nu _R\)’s) must exist. In fact, the smallness of the neutrino masses explains the strong suppression of lepton number violating effects.

  8. 8.

    At Brookhaven the 24 GeV proton beam extracted from the AGS with \(60\times 10^{12}\) protons per AGS cycle of 2.5 s impinges on a Nickel target of one interaction length and produces amongst other debris–particles a large number of low energy pions. The pions are momentum selected and then decay in a straight section where about one third of the pions decay into muons. The latter are momentum selected once more before they are injected into the \(g-2\) storage ring.

  9. 9.

    Note that the original electron phase space element \(\mathrm{d}V_e\equiv \frac{\mathrm{d}^3p_1}{E_e}\) is L–invariant such that with \( \mathrm{d}^3 p_1=-p_e^2 \mathrm{d}p_e\, \mathrm{d}\cos \theta \, \mathrm{d}\varphi \), after integrating over the azimuthal angle \(\varphi \), giving a factor \(2\pi \), and using \(p_e \mathrm{d}p_e= E_e \mathrm{d}E_e\) we infer that \(\mathrm{d}V_e \rightarrow 2\pi \,\sqrt{E_e^2-m_e^2} \mathrm{d}E_e\, \mathrm{d}\cos \theta \) is independent of the frame. While in the rest frame \(u_0p_1=-\mathbf {P}_\mu \mathbf {p}_1=-P_\mu p_e \cos \theta \) in the laboratory frame \(u_0=\left( 1,\frac{\mathbf {p}_0}{E_0-m}\right) \,\frac{\mathbf {p}_0\mathbf {P}_\mu }{m}\) and thus \(u_0p_1=\cos \theta _{\mu }\,\frac{p_\mu }{m}\,\left( E_e-\frac{p_\mu p_{1x}}{E_0-m}\right) \).

  10. 10.

    With \(Q^2{=}m_\mu ^2+m_e^2-2p_0p_1\), \(Qp_0{=}m_\mu ^2-p_0p_1\), \(Qp_1{=}p_0p_1-m_e^2\), and \(p_0p_1{=}m_\mu E_e\), \(E_e=xW,\,m_\mu =2W\) the curly bracket of (6.56) reads \(\left\{ \cdots \right\} =8W^4\,x\,\left[ (3-2x)+P_\mu \cos \theta \left( 2x-1\right) \right] +O(m_e^2/m_\mu ^2)\).

  11. 11.

    Note that, this is not what one gets by writing (6.56) in terms of laboratory system variables. It is rather a matter of how the geometrical acceptance of the decay positrons/electrons is affected by boosting the system.

  12. 12.

    This value is replacing \(\lambda =3.18334539(10)\) used in [24].

  13. 13.

    The gyromagnetic ratios of the bound electron and muon differ from the free ones by the binding corrections [38]

    $$\begin{aligned} g_J= g_e\,\left( 1-\frac{\alpha ^2}{3}+\frac{\alpha ^2}{2}\frac{m_e}{m_\mu } +\frac{\alpha ^3}{4\pi } \right) ~~,~~~ g_\mu '= g_\mu \,\left( 1-\frac{\alpha ^2}{3}+\frac{\alpha ^2}{2}\frac{m_e}{m_\mu } \right) \;. \end{aligned}$$

    .

  14. 14.

    What I mean is that, as in Sect. 6.3, one solves the Dirac equation in en external field (the first of the QED field Eq. (3.1) with zero radiation field \(A_\mu (x)\equiv 0\)) rather than the coupled QED field equations.

References

  1. J. Bailey et al., Nuovo Cim. A 9, 369 (1972)

    Article  ADS  Google Scholar 

  2. F. Combley, E. Picasso, Phys. Rep. 14C, 1 (1974)

    Article  ADS  Google Scholar 

  3. F.J.M. Farley, E. Picasso, in Quantum Electrodynamics, ed. by T. Kinoshita (World Scientific, Singapore 1990), p. 479; Adv. Ser. Direct. High Energy Phys. 7, 479 (1990)

    Google Scholar 

  4. V.W. Hughes, The anomalous magnetic moment of the muon, in International School of Subnuclear Physics: 39th Course: New Fields and Strings in Subnuclear Physics, Erice, Italy, 29 Aug–7 Sep (2001); Int. J. Mod. Phys. A 18S1, 215 (2003)

    Google Scholar 

  5. F.J.M. Farley, Y.K. Semertzidis, Prog. Part. Nucl. Phys. 52, 1 (2004)

    Article  ADS  Google Scholar 

  6. D.W. Hertzog, W.M. Morse, Annu. Rev. Nucl. Part. Sci. 54, 141 (2004)

    Article  ADS  Google Scholar 

  7. J.M. Paley, Measurement of the anomalous magnetic moment of the negative muon to 0.7 parts per million, Boston University Dissertation, 2004, Available from the UMI Thesis Server

    Google Scholar 

  8. J.P. Miller, E. de Rafael, B.L. Roberts, Rep. Prog. Phys. 70, 795 (2007). doi:10.1088/0034-4885/70/5/R03

  9. J. Grange et al. [Muon g-2 Collab.], arXiv:1501.06858 [physics.ins-det]

  10. D.W. Hertzog, EPJ Web Conf. 118, 01015 (2016). doi:10.1051/epjconf/201611801015

    Article  Google Scholar 

  11. G. Venanzoni [Fermilab E989 Collab.], Nucl. Part. Phys. Proc. 273–275, 584 (2016). doi:10.1016/j.nuclphysbps.2015.09.087; PoS EPS-HEP2015, 568 (2015)

  12. N. Saito [J-PARC g-2/EDM Collab.], AIP Conf. Proc. 1467, 45 (2012). doi:10.1063/1.4742078

  13. H. Iinuma [J-PARC muon g-2/EDM Collab.], J. Phys. Conf. Ser. 295, 012032 (2011). doi:10.1088/1742-6596/295/1/012032

  14. T. Mibe [J-PARC g-2 Collab.], Nucl. Phys. Proc. Suppl. 218, 242 (2011). doi:10.1016/j.nuclphysbps.2011.06.039

  15. J. Bailey et al., Nucl. Phys. B 150, 1 (1979)

    Article  ADS  Google Scholar 

  16. G.W. Bennett et al. [Muon g-2 Collab.], Phys. Rev. D 73, 072003 (2006)

    Google Scholar 

  17. G.T. Danby et al., Nucl. Instrum. Methods Phys. Res. A 457, 151 (2001)

    Google Scholar 

  18. Y.K. Semertzidis, Nucl. Instrum. Methods Phys. Res. A 503, 458 (2003)

    Article  ADS  Google Scholar 

  19. E. Efstathiadis et al., Nucl. Instrum. Methods Phys. Res. A 496, 8 (2002)

    Article  ADS  Google Scholar 

  20. R.M. Carey et al., Phys. Rev. Lett. 82, 1632 (1999)

    Article  ADS  Google Scholar 

  21. H.N. Brown et al. [Muon (g-2) Collab.], Phys. Rev. D 62, 091101 (2000)

    Google Scholar 

  22. H.N. Brown et al. [Muon (g-2) Collab.], Phys. Rev. Lett. 86, 2227 (2001)

    Google Scholar 

  23. G.W. Bennett et al. [Muon g-2 Collab.], Phys. Rev. Lett. 89, 101804 (2002) [Erratum-ibid. 89, 129903 (2002)]

    Google Scholar 

  24. G.W. Bennett et al. [Muon g-2 Collab.], Phys. Rev. Lett. 92, 161802 (2004)

    Google Scholar 

  25. R. Prigl et al., Nucl. Instrum. Methods Phys. Res. A 374, 118 (1996); X. Fei, V. Hughes, R. Prigl, Nucl. Instrum. Methods Phys. Res. A 394, 349 (1997)

    Google Scholar 

  26. W. Liu et al., Phys. Rev. Lett. 82, 711 (1999)

    Article  ADS  Google Scholar 

  27. T. Kinoshita, M. Nio, Phys. Rev. D 53, 4909 (1996); M. Nio, T. Kinoshita, Phys. Rev. D 55, 7267 (1997); T. Kinoshita, arXiv:hep-ph/9808351

  28. A. Czarnecki, S.I. Eidelman, S.G. Karshenboim, Phys. Rev. D 65, 053004 (2002); S.G. Karshenboim, V.A. Shelyuto, Phys. Lett. B 517, 32 (2001)

    Google Scholar 

  29. H. Lamm, Phys. Rev. A 95(1), 012505 (2017)

    Google Scholar 

  30. P.J. Mohr, B.N. Taylor, Rev. Mod. Phys. 72, 351 (2000); 77, 1 (2005); P.J. Mohr, B.N. Taylor, D.B. Newell, Rev. Mod. Phys. 84, 1527 (2012)

    Google Scholar 

  31. L.H. Thomas, Phil. Mag. 3, 1 (1927); V. Bargmann, L. Michel, V.A. Telegdi, Phys. Rev. Lett. 2, 435 (1959); B.W. Montague, Phys. Rep. 113, 1 (1984); J.S. Bell, CERN-75-11, 38p (1975)

    Google Scholar 

  32. C. Duval, Nucl. Phys. B 912, 450 (2016)

    Article  ADS  Google Scholar 

  33. F.J.N. Farley, Phys. Lett. B 42, 66 (1972)

    Article  ADS  Google Scholar 

  34. F. Scheck, Leptons, Hadrons and Nuclei (North Holland, Amsterdam, 1983)

    Google Scholar 

  35. G. Charpak et al., Phys. Rev. Lett. 6, 128 (1961); G. Charpak et al., Nuovo Cim. 22, 1043 (1961)

    Google Scholar 

  36. J. Bailey et al., Phys. Lett. B 28, 287 (1968); Nuovo Cim. A 9, 369 (1972)

    Google Scholar 

  37. S. Eidelman et al. [Particle Data Group], Phys. Lett. B 592, 1 (2004); K.A. Olive et al., Chin. Phys. C 38, 090001 (2014); C. Patrignani et al., Chin. Phys. C 40(10), 100001 (2016)

    Google Scholar 

  38. H. Grotch, R.A. Hegstrom, Phys. Rev. A 4, 59 (1971); R. Faustov. Phys. Lett. B 33, 422 (1970)

    Google Scholar 

  39. K. Pachucki, Phys. Rev. A 54, 1994 (1996); ibid. 56, 297 (1997); S.G. Karshenboim, Z. Phys. D 36, 11 (1996); S.A. Blundell, K.T. Cheng, J. Sapirstein, Phys. Rev. Lett. 78, 4914 (1997); M.I. Eides, H. Grotch, V.A. Shelyuto, Phys. Rev. D 58, 013008 (1998)

    Google Scholar 

  40. K. Melnikov, A. Yelkhovsky, Phys. Rev. Lett. 86, 1498 (2001)

    Article  ADS  Google Scholar 

  41. R.J. Hill, Phys. Rev. Lett. 86, 3280 (2001)

    Article  ADS  Google Scholar 

  42. K.P. Jungmann, Nucl. Phys. News 12, 23 (2002)

    Article  Google Scholar 

  43. F.G. Major, V.N. Gheorghe, G. Werth, Charged Particle Traps (Springer, Berlin, 2005)

    Google Scholar 

  44. R.S. Van Dyck, P.B. Schwinberg, H.G. Dehmelt, Phys. Rev. D 34, 722 (1986)

    Article  ADS  Google Scholar 

  45. S. Peil, G. Gabrielse, Phys. Rev. Lett. 83, 1287 (1999)

    Article  ADS  Google Scholar 

  46. L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  47. T. Beier et al., Phys. Rev. Lett. 88, 011603 (2002); Nucl. Instrum. Methods B 205, 15 (2003)

    Google Scholar 

  48. D. Hanneke, S. Fogwell, G. Gabrielse, Phys. Rev. Lett. 100, 120801 (2008). doi:10.1103/PhysRevLett.100.120801, http://g2pc1.bu.edu/lept06/GabrielseTalk.pdf

  49. D. Hanneke, S.F. Hoogerheide, G. Gabrielse, Phys. Rev. A 83, 052122 (2011). doi:10.1103/PhysRevA.83.052122

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Jegerlehner .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jegerlehner, F. (2017). The \(g-2\) Experiments. In: The Anomalous Magnetic Moment of the Muon. Springer Tracts in Modern Physics, vol 274. Springer, Cham. https://doi.org/10.1007/978-3-319-63577-4_6

Download citation

Publish with us

Policies and ethics