Advertisement

Electromagnetic and Weak Radiative Corrections

Chapter
  • 984 Downloads
Part of the Springer Tracts in Modern Physics book series (STMP, volume 274)

Abstract

The by far largest contribution to the anomalous magnetic moment is of pure QED origin. This is of course the reason why the measurements of \(a_e\) and \(a_\mu \) until not so long time ago may have been considered as precision tests of QED. The clear dominance to more than 99.99% of just one type of interaction, the interaction of the charged leptons e, \(\mu \) and \(\tau \) with the photon, historically, was very important for the development of QFT and QED, since it allowed us to test QED as a model theory under very simple, clean and unambiguous conditions.

References

  1. 1.
    T. Kinoshita, B. Nizic, Y. Okamoto, Phys. Rev. D 41, 593 (1990)Google Scholar
  2. 2.
    T. Kinoshita, W.J. Marciano, in Quantum Electrodynamics, ed. by T. Kinoshita (World Scientific, Singapore, 1990), pp. 419–478Google Scholar
  3. 3.
    G.W. Bennett et al., Muon (g-2) Collab. Phys. Rev. Lett. 92, 161802 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    B.L. Roberts, Nucl. Phys. B (Proc. Suppl.) 131 57 (2004); R.M. Carey et al., Proposal of the BNL Experiment E969 (2004), www.bnl.gov/henp/docs/pac0904/P969.pdf; J-PARC Letter of Intent L17, B.L. Roberts contact person
  5. 5.
    B.E. Lautrup, E. de Rafael, Nucl. Phys. B 70, 317 (1974)ADSCrossRefGoogle Scholar
  6. 6.
    P.J. Mohr, B.N. Taylor, Rev. Mod. Phys. 77, 1 (2005); P.J. Mohr, B.N. Taylor, D.B. Newell, Rev. Mod. Phys. 84, 1527 (2012)Google Scholar
  7. 7.
    F. Jegerlehner, A. Nyffeler, Phys. Rept. 477, 1 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    A. Petermann, Helv. Phys. Acta 30, 407 (1957); Nucl. Phys. 5, 677 (1958)Google Scholar
  9. 9.
    C.M. Sommerfield, Phys. Rev. 107, 328 (1957); Ann. Phys. (NY) 5, 26 (1958)Google Scholar
  10. 10.
    B.E. Lautrup, E. De Rafael, Nuovo Cim. A 64, 322 (1969)ADSCrossRefGoogle Scholar
  11. 11.
    H. Suura, E. Wichmann, Phys. Rev. 105, 1930 (1957); A. Petermann, Phys. Rev. 105, 1931 (1957)Google Scholar
  12. 12.
    H.H. Elend, Phys. Lett. 20, 682 (1966); Erratum-ibid 21, 720 (1966)Google Scholar
  13. 13.
    M. Passera, J. Phys, G 31 R75 (2005); Phys. Rev. D 75, 013002 (2007)Google Scholar
  14. 14.
    G. Li, R. Mendel, M.A. Samuel, Phys. Rev. D 47, 1723 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    J.A. Mignaco, E. Remiddi, Nuovo Cim. A 60, 519 (1969); R. Barbieri, E. Remiddi, Phys. Lett. B 49, 468 (1974); Nucl. Phys. B 90, 233 (1975); R. Barbieri, M. Caffo, E. Remiddi, Phys. Lett. B 57, 460 (1975); M.J. Levine, E. Remiddi, R. Roskies, Phys. Rev. D 20, 2068 (1979); S. Laporta, E. Remiddi, Phys. Lett. B 265, 182 (1991); S. Laporta, Phys. Rev. D 47, 4793 (1993); Phys. Lett. B 343, 421 (1995); S. Laporta, E. Remiddi, Phys. Lett. B 356, 390 (1995)Google Scholar
  16. 16.
    S. Laporta, E. Remiddi, Phys. Lett. B 379, 283 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    T. Kinoshita, Phys. Rev. Lett. 75, 4728 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    T. Kinoshita, Nuovo Cim. B 51, 140 (1967)ADSCrossRefGoogle Scholar
  19. 19.
    B.E. Lautrup, E. De Rafael, Phys. Rev. 174, 1835 (1968); B.E. Lautrup, M.A. Samuel, Phys. Lett. B 72, 114 (1977)Google Scholar
  20. 20.
    S. Laporta, Nuovo Cim. A 106, 675 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    S. Laporta, E. Remiddi, Phys. Lett. B 301, 440 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    J.H. Kühn, A.I. Onishchenko, A.A. Pivovarov, O.L. Veretin, Phys. Rev. D 68, 033018 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    M.A. Samuel, G. Li, Phys. Rev. D 44, 3935 (1991) [Errata-ibid. D 46, 4782 (1992); D 48, 1879 (1993)]Google Scholar
  24. 24.
    A. Czarnecki, M. Skrzypek, Phys. Lett. B 449, 354 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    S. Friot, D. Greynat, E. De Rafael, Phys. Lett. B 628, 73 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    B.E. Lautrup, M.A. Samuel, Phys. Lett. B 72, 114 (1977)ADSCrossRefGoogle Scholar
  27. 27.
    T. Kinoshita, Phys. Rev. Lett. 61, 2898 (1988)ADSCrossRefGoogle Scholar
  28. 28.
    M.A. Samuel, Phys. Rev. D 45, 2168 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    R. Barbieri, E. Remiddi, Nucl. Phys. B 90, 233 (1975)ADSCrossRefGoogle Scholar
  30. 30.
    R. Barbieri, E. Remiddi, Phys. Lett. B 57, 273 (1975)ADSCrossRefGoogle Scholar
  31. 31.
    J. Aldins, T. Kinoshita, S.J. Brodsky, A.J. Dufner, Phys. Rev. Lett. 23, 441 (1969); Phys. Rev. D 1, 2378 (1970)Google Scholar
  32. 32.
    M. Caffo, S. Turrini, E. Remiddi, Phys. Rev. D 30, 483 (1984); E. Remiddi, S.P. Sorella, Lett. Nuovo Cim. 44, 231 (1985); R.N. Faustov, A.L. Kataev, S.A. Larin, V.V. Starshenko, Phys. Lett. B 254, 241 (1991); D.J. Broadhurst, A.L. Kataev, O.V. Tarasov, Phys. Lett. B 298, 445 (1993)Google Scholar
  33. 33.
    S. Laporta, Phys. Lett. B 312, 495 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    P.A. Baikov, D.J. Broadhurst, Three–loop QED Vacuum Polarization and the Four–loop Muon Anomalous Magnetic Moment, in New Computing Techniques in Physics Research IV. International Workshop on Software Engineering and Artificial Intelligence for High Energy, Nuclear Physics, ed by B. Denby, D. Perret-Gallix (World Scientific, Singapore 1995), pp. 167–172, arXiv:hep-ph/9504398
  35. 35.
    J.P. Aguilar, D. Greynat, E. De Rafael, Phys. Rev. D 77, 093010 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    T. Kinoshita, W.B. Lindquist, Phys. Rev. Lett. 47, 1573 (1981)Google Scholar
  37. 37.
    T. Kinoshita, W.B. Lindquist, Phys. Rev. D 27, 867 (1983); Phys. Rev. D 27, 877 (1983); Phys. Rev. D 27, 886 (1983); Phys. Rev. D 39, 2407 (1989); Phys. Rev. D 42, 636 (1990)Google Scholar
  38. 38.
    T. Kinoshita, in Quantum Electrodynamics, ed. by T. Kinoshita (World Scientific, Singapore, 1990), pp. 218–321Google Scholar
  39. 39.
    T. Kinoshita, Phys. Rev. D 47, 5013 (1993)ADSCrossRefGoogle Scholar
  40. 40.
    V.W. Hughes, T. Kinoshita, Rev. Mod. Phys. 71, S133 (1999)CrossRefGoogle Scholar
  41. 41.
    T. Kinoshita, M. Nio, Phys. Rev. Lett. 90, 021803 (2003); Phys. Rev. D 70, 113001 (2004)Google Scholar
  42. 42.
    T. Kinoshita, Nucl. Phys. B (Proc. Suppl.) 144, 206 (2005)Google Scholar
  43. 43.
    T. Kinoshita, M. Nio, Phys. Rev. D 73, 013003 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Phys. Rev. Lett. 99, 110406 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Phys. Rev. Lett. 109, 111807 (2012). doi: 10.1103/PhysRevLett.109.111807
  46. 46.
    T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Phys. Rev. Lett. 109, 111808 (2012). doi: 10.1103/PhysRevLett.109.111808
  47. 47.
    S. Laporta, arXiv:1704.06996 [hep-ph]
  48. 48.
    T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Phys. Rev. D 91, 033006 (2015). doi: 10.1103/PhysRevD.91.033006 ADSCrossRefGoogle Scholar
  49. 49.
    G.P. Lepage, J. Comput. Phys. 27, 192 (1978)ADSCrossRefGoogle Scholar
  50. 50.
    T. Kinoshita, I.E.E.E. Trans, Instrum. Meas. 44, 498 (1995)CrossRefGoogle Scholar
  51. 51.
    T. Kinoshita, I.E.E.E. Trans, Instrum. Meas. 46, 108 (1997)CrossRefGoogle Scholar
  52. 52.
    V.W. Hughes, T. Kinoshita, Rev. Mod. Phys. 71, S133 (1999); T. Kinoshita, IEEE Trans. Instrum. Meas. 50, 568 (2001)Google Scholar
  53. 53.
    T. Kinoshita, Recent Developments of the Theory of Muon and Electron g-2, in In Memory of Vernon Willard Hughes, ed. by E.W. Hughes, E. Iachello (World Scientific, Singapore, 2004), pp. 58–77CrossRefGoogle Scholar
  54. 54.
    T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Nucl. Phys. B 740, 138 (2006)ADSCrossRefGoogle Scholar
  55. 55.
    T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Nucl. Phys. B 796, 184 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    S. Laporta, Int. J. Mod. Phys. A 15, 5087 (2000)ADSMathSciNetGoogle Scholar
  57. 57.
    S. Laporta, Phys. Lett. B 504, 188 (2001)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    S. Laporta, Phys. Lett. B 523, 95 (2001)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    S. Laporta, Acta Phys. Polon. B 34, 5323 (2003)ADSGoogle Scholar
  60. 60.
    S. Laporta, P. Mastrolia, E. Remiddi, Nucl. Phys. B 688, 165 (2004)ADSCrossRefGoogle Scholar
  61. 61.
    S. Laporta, Int. J. Mod. Phys. A 23, 5007 (2008)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    S. Laporta, Subnucl. Ser. 45, 409 (2009)Google Scholar
  63. 63.
    M. Caffo, S. Turrini, E. Remiddi, Phys. Rev. D 30, 483 (1984)ADSCrossRefGoogle Scholar
  64. 64.
    M.A. Samuel, Lett. Nuovo Cim. 21, 227 (1978)CrossRefGoogle Scholar
  65. 65.
    M.L. Laursen, M.A. Samuel, J. Math. Phys. 22, 1114 (1981)ADSMathSciNetCrossRefGoogle Scholar
  66. 66.
    J. Calmet, A. Peterman, Phys. Lett. B 56, 383 (1975)ADSCrossRefGoogle Scholar
  67. 67.
    M.A. Samuel, C. Chlouber, Phys. Rev. Lett. 36, 442 (1976); C. Chlouber, M.A. Samuel, Phys. Rev. D 16, 3596 (1977)Google Scholar
  68. 68.
    T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Phys. Rev. D 77, 053012 (2008). doi: 10.1103/PhysRevD.77.053012
  69. 69.
    S. Laporta, P. Mastrolia, E. Remiddi, Nucl. Phys. B 688 (2004) 165; P. Mastrolia, E. Remiddi, Nucl. Phys. B (Proc. Suppl.) 89, 76 (2000)Google Scholar
  70. 70.
    A.L. Kataev, Phys. Rev. D 86, 013010 (2012)ADSCrossRefGoogle Scholar
  71. 71.
    P.A. Baikov, K.G. Chetyrkin, C. Sturm, Nucl. Phys. Proc. Suppl. 183, 8 (2008)ADSCrossRefGoogle Scholar
  72. 72.
    P.A. Baikov, K.G. Chetyrkin, J.H. Kühn, C. Sturm, Nucl. Phys. B 867, 182 (2013)ADSCrossRefGoogle Scholar
  73. 73.
    R. Lee, P. Marquard, A.V. Smirnov, V.A. Smirnov, M. Steinhauser, JHEP 1303, 162 (2013)ADSCrossRefGoogle Scholar
  74. 74.
    A. Kurz, T. Liu, P. Marquard, M. Steinhauser, Nucl. Phys. B 879, 1 (2014)ADSCrossRefGoogle Scholar
  75. 75.
    A. Kurz, T. Liu, P. Marquard, A.V. Smirnov, V.A. Smirnov, M. Steinhauser, Phys. Rev. D 92, 073019 (2015)ADSCrossRefGoogle Scholar
  76. 76.
    T. Kinoshita, M. Nio, Phys. Rev. D 73, 053007 (2006)ADSCrossRefGoogle Scholar
  77. 77.
    T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, N. Watanabe, Phys. Rev. D 78, 053005 (2008)ADSCrossRefGoogle Scholar
  78. 78.
    T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Phys. Rev. D 78, 113006 (2008)ADSCrossRefGoogle Scholar
  79. 79.
    T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Phys. Rev. D 82, 113004 (2010)ADSCrossRefGoogle Scholar
  80. 80.
    T. Aoyama, K. Asano, M. Hayakawa, T. Kinoshita, M. Nio, N. Watanabe, Phys. Rev. D 81, 053009 (2010)ADSCrossRefGoogle Scholar
  81. 81.
    T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Phys. Rev. D 83, 053003 (2011)ADSCrossRefGoogle Scholar
  82. 82.
    T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Phys. Rev. D 83, 053002 (2011)ADSCrossRefGoogle Scholar
  83. 83.
    T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Phys. Rev. D 84, 053003 (2011)ADSCrossRefGoogle Scholar
  84. 84.
    T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Phys. Rev. D 85, 033007 (2012)ADSCrossRefGoogle Scholar
  85. 85.
    T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Phys. Rev. D 85, 093013 (2012)ADSCrossRefGoogle Scholar
  86. 86.
    P. Baikov, A. Maier, P. Marquard, Nucl. Phys. B 877, 647 (2013)ADSCrossRefGoogle Scholar
  87. 87.
    P.A. Baikov, A. Maier, P. Marquard, Acta Phys. Polon. B 44, 2267 (2013)ADSCrossRefGoogle Scholar
  88. 88.
    S.G. Karshenboim, Phys. Atom. Nucl. 56, 857 (1993) [Yad. Fiz. 56N6, 252 (1993)]Google Scholar
  89. 89.
    A.L. Kataev, Nucl. Phys. Proc. Suppl. 155, 369 (2006), arXiv:hep-ph/0602098; Phys. Rev. D 74, 073011 (2006)
  90. 90.
    S. Laporta, Phys. Lett. B 328, 522 (1994)ADSCrossRefGoogle Scholar
  91. 91.
    A. Kurz, T. Liu, P. Marquard, A. Smirnov, V. Smirnov, M. Steinhauser, Phys. Rev. D 93, 053017 (2016)ADSCrossRefGoogle Scholar
  92. 92.
    P. Nogueira, Automatic feynman graph generation. J. Comput. Phys. 105, 279 (1993)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    J.A.M. Vermaseren, arXiv:math-ph/0010025
  94. 94.
    J. Kuipers, T. Ueda, J.A.M. Vermaseren, J. Vollinga, Comput. Phys. Commun. 184, 1453 (2013)ADSCrossRefGoogle Scholar
  95. 95.
    M. Tentyukov, J.A.M. Vermaseren, Comput. Phys. Commun. 181, 1419 (2010)ADSCrossRefGoogle Scholar
  96. 96.
    M. Steinhauser, T. Ueda, J.A.M. Vermaseren, Nucl. Part. Phys. Proc. 261–262 45Google Scholar
  97. 97.
    R.H. Lewis, Fermat s User Guide, http://www.bway.net/~lewis/
  98. 98.
    A. Pak, A. Smirnov, Eur. Phys. J. C 71, 1626 (2011)ADSCrossRefGoogle Scholar
  99. 99.
    B. Jantzen, A.V. Smirnov, V.A. Smirnov, Eur. Phys. J. C 72, 2139 (2012)ADSCrossRefGoogle Scholar
  100. 100.
    M. Beneke, V.A. Smirnov, Nucl. Phys. B 522, 321 (1998)ADSCrossRefGoogle Scholar
  101. 101.
    V.A. Smirnov, Springer Tracts Mod. Phys. 177, 1 (2002)ADSCrossRefGoogle Scholar
  102. 102.
    V.A. Smirnov, Springer Tracts Mod. Phys. 250, 1 (2012)CrossRefGoogle Scholar
  103. 103.
    A.V. Smirnov, Comput. Phys. Commun. 189, 182 (2015)ADSCrossRefGoogle Scholar
  104. 104.
    P. Marquard, D. Seidel, unpublishedGoogle Scholar
  105. 105.
    K.G. Chetyrkin, F.V. Tkachov, Nucl. Phys. B 192, 159 (1981)ADSCrossRefGoogle Scholar
  106. 106.
    L.V. Avdeev, Comput. Phys. Commun. 98, 15 (1996)ADSCrossRefGoogle Scholar
  107. 107.
    V.A. Smirnov, Phys. Lett. B 460, 397 (1999)ADSCrossRefGoogle Scholar
  108. 108.
    J.B. Tausk, Phys. Lett. B 469, 225 (1999)ADSMathSciNetCrossRefGoogle Scholar
  109. 109.
    M. Czakon, Comput. Phys. Commun. 175, 559 (2006)ADSCrossRefGoogle Scholar
  110. 110.
    A.V. Smirnov, Comput. Phys. Commun. 185, 2090 (2014)ADSCrossRefGoogle Scholar
  111. 111.
    D.H. Bailey, A Portable High Performance Multiprecision Package. NASA Ames Research Center, RNR Technical Report RNR-90-022 (E-mail: dbailey@nas.nasa.gov); H.R.P. Ferguson, D.H. Bailey, S. Arno, Analysis of PSLQ, An Integer Relation Finding Algorithm. Math. Comput. 68, 351–369 (1999)Google Scholar
  112. 112.
    A.V. Kotikov, Phys. Lett. B 254, 158 (1991)ADSMathSciNetCrossRefGoogle Scholar
  113. 113.
    E. Remiddi, Nuovo Cim. A 110, 1435 (1997)ADSGoogle Scholar
  114. 114.
    T. Gehrmann, E. Remiddi, Nucl. Phys. B 580, 485 (2000)ADSCrossRefGoogle Scholar
  115. 115.
    S. Laporta, E. Remiddi, Nucl. Phys. B 704, 349 (2005)ADSCrossRefGoogle Scholar
  116. 116.
    M.Y. Kalmykov, JHEP 0604, 056 (2006)ADSMathSciNetCrossRefGoogle Scholar
  117. 117.
    G.A. Baker, Jr., J.L. Gammel, J.G. Wills, J. Math. Anal. Appl. 2, 405 (1961); G.A. Baker, Jr., Essentials of Pad é Approximants, Academic Press (1975)Google Scholar
  118. 118.
    S.L. Glashow, Nucl. Phys. B 22, 579 (1961); S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967); A. Salam, Weak and electromagnetic interactions, in Elementary Particle Theory, ed by N. Svartholm (Amquist and Wiksells, Stockholm, 1969), pp. 367–377Google Scholar
  119. 119.
    G. ’t Hooft, Nucl. Phys. B 33, 173 (1971); 35, 167 (1971); G. ’t Hooft, M. Veltman, Nucl. Phys. B 50, 318 (1972)Google Scholar
  120. 120.
    R. Jackiw, S. Weinberg, Phys. Rev. D 5, 2396 (1972); I. Bars, M. Yoshimura, Phys. Rev. D 6, 374 (1972); G. Altarelli, N. Cabibbo, L. Maiani, Phys. Lett. B 40, 415 (1972); W.A. Bardeen, R. Gastmans, B. Lautrup, Nucl. Phys. B 46, 319 (1972); K. Fujikawa, B.W. Lee, A.I. Sanda. Phys. Rev. D 6, 2923 (1972)Google Scholar
  121. 121.
    P.W. Higgs, Phys. Lett. 12B, 132 (1964); Phys. Rev. Lett. 13, 508 (1964); Phys. Rev. 145, 1156 (1966); F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964); G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Phys. Rev. Lett. 13, 585 (1964); T.W.B. Kibble, Phys. Rev. 155, 1554 (1967)Google Scholar
  122. 122.
    F. Gianotti (the ATLAS Collab.). CERN Seminar, July 4th, 2012; J. Incandela (the CMS Collab.). CERN Seminar, July 4th, 2012Google Scholar
  123. 123.
    G. Aad et al., [ATLAS Collab.], Phys. Lett. B 716, 1 (2012). Science 338, 1576 (2012)Google Scholar
  124. 124.
    S. Chatrchyan et al., [CMS Collab.], Phys. Lett. B 716, 30 (2012). Science 338, 1569 (2012)Google Scholar
  125. 125.
    N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963). M. Kobayashi, K. Maskawa. Prog. Theor. Phys. 49, 652 (1973)Google Scholar
  126. 126.
    B. Pontecorvo, Sov. Phys. JETP 6, 429 (1957) [Zh. Eksp. Teor. Fiz. 33, 549 (1957)]; Sov. Phys. JETP 26, 984 (1968) [Zh. Eksp. Teor. Fiz. 53, 1717 (1967)]; Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28, 870 (1962)Google Scholar
  127. 127.
    S.L. Glashow, J. Iliopoulos, L. Maiani, Phys. Rev. D 2, 1285 (1970)ADSCrossRefGoogle Scholar
  128. 128.
    W.J. Marciano, A. Sirlin, Phys. Rev. Lett. 61, 1815 (1988)ADSCrossRefGoogle Scholar
  129. 129.
    T. van Ritbergen, R.G. Stuart, Phys. Rev. Lett. 82, 488 (1999)ADSCrossRefGoogle Scholar
  130. 130.
    M. Awramik, M. Czakon, Phys. Lett. B 568, 48 (2003)ADSCrossRefGoogle Scholar
  131. 131.
    M. Veltman, Nucl. Phys. B 123, 89 (1977); M.S. Chanowitz et al., Phys. Lett. 78B, 1 (1978); M. Consoli, S. Lo Presti, L. Maiani, Nucl. Phys. B 223, 474 (1983); J. Fleischer, F. Jegerlehner, Nucl. Phys. B 228, 1 (1983)Google Scholar
  132. 132.
    M. Consoli, W. Hollik, F. Jegerlehner, Phys. Lett. B 227, 167 (1989)ADSCrossRefGoogle Scholar
  133. 133.
    F. Jegerlehner, Renormalizing the Standard Model, in Testing the Standard Model, ed. by M. Cvetič, P. Langacker (World Scientific, Singapore, 1991), pp. 476–590, http://www-com.physik.hu-berlin.de/~fjeger/books.html
  134. 134.
    F. Jegerlehner, Prog. Part. Nucl. Phys. 27, 1 (1991), http://www-com.physik.hu-berlin.de/~fjeger/books.html
  135. 135.
    S. Schael et al., [ALEPH and DELPHI and L3 and OPAL and SLD and LEP Electroweak Working Group and SLD Electroweak Group and SLD Heavy Flavour Group Collab.s], Phys. Rept. 427, 257 (2006)Google Scholar
  136. 136.
    J. Fleischer, F. Jegerlehner, Phys. Rev. D 23, 2001 (1981)ADSCrossRefGoogle Scholar
  137. 137.
    F. Jegerlehner, Nuovo Cim. C 034S1, 31 (2011)Google Scholar
  138. 138.
    A. Francis, G. von Hippel, H.B. Meyer, F. Jegerlehner, PoS LATTICE 2013, 320 (2013), arXiv:1312.0035 [hep-lat]
  139. 139.
    F. Burger, K. Jansen, M. Petschlies, G. Pientka, JHEP 1511, 215 (2015)ADSCrossRefGoogle Scholar
  140. 140.
    A. Francis, V. Gülpers, G. Herdoza, H. Horch, B. Jäger, H.B. Meyer, H. Wittig, PoS LATTICE 2015, 110 (2015), arXiv:1511.04751 [hep-lat]
  141. 141.
    F. Jegerlehner, Precision Tests of Electroweak-Interaction Parameters, in Testing the Standard Model, ed. by M. Zrałek, R. Mańka (World Scientific, Singapore, 1988), pp. 33–108Google Scholar
  142. 142.
    A. Czarnecki, W.J. Marciano, Phys. Rev. D 53, 1066 (1996); Int. J. Mod. Phys. A 15, 2365 (2000)Google Scholar
  143. 143.
    J. Erler, M.J. Ramsey-Musolf, Phys. Rev. D 72, 073003 (2005)ADSCrossRefGoogle Scholar
  144. 144.
    T.V. Kukhto, E.A. Kuraev, A. Schiller, Z.K. Silagadze, Nucl. Phys. B 371, 567 (1992)ADSCrossRefGoogle Scholar
  145. 145.
    S.L. Adler, Phys. Rev. 177, 2426 (1969); J.S. Bell, R. Jackiw, Nuovo Cim. 60A, 47 (1969); W.A. Bardeen, Phys. Rev. 184, 1848 (1969)Google Scholar
  146. 146.
    C. Bouchiat, J. Iliopoulos, P. Meyer, Phys. Lett. 38B, 519 (1972); D. Gross, R. Jackiw, Phys. Rev. D 6, 477 (1972); C.P. Korthals Altes, M. Perrottet, Phys. Lett. 39B, 546 (1972)Google Scholar
  147. 147.
    S. Peris, M. Perrottet, E. de Rafael, Phys. Lett. B 355, 523 (1995)ADSCrossRefGoogle Scholar
  148. 148.
    A. Czarnecki, B. Krause, W. Marciano, Phys. Rev. D 52, R2619 (1995)ADSCrossRefGoogle Scholar
  149. 149.
    F. Jegerlehner, Nucl. Phys. (Proc. Suppl.) C 51, 131 (1996)Google Scholar
  150. 150.
    E. D’Hoker, Phys. Rev. Lett. 69, 1316 (1992)ADSCrossRefGoogle Scholar
  151. 151.
    T. Sterling, M.J.G. Veltman, Nucl. Phys. B 189, 557 (1981)ADSCrossRefGoogle Scholar
  152. 152.
    G. Degrassi, G.F. Giudice, Phys. Rev. 58D, 053007 (1998)ADSGoogle Scholar
  153. 153.
    A. Czarnecki, W.J. Marciano, A. Vainshtein, Phys. Rev. D 67, 073006 (2003) [Erratum-ibid. D 73, 119901 (2006)]Google Scholar
  154. 154.
    A. Czarnecki, B. Krause, W.J. Marciano, Phys. Rev. Lett. 76, 3267 (1996)ADSCrossRefGoogle Scholar
  155. 155.
    M. Knecht, S. Peris, M. Perrottet, E. de Rafael, JHEP 0211, 003 (2002); E. de Rafael, The muon \(g-2\) revisited, arXiv:hep-ph/0208251
  156. 156.
    A. Czarnecki, W.J. Marciano, A. Vainshtein, Acta Phys. Polon. B 34, 5669 (2003)ADSGoogle Scholar
  157. 157.
    S.L. Adler, W.A. Bardeen, Phys. Rev. 182, 1517 (1969)ADSCrossRefGoogle Scholar
  158. 158.
    J. Wess, B. Zumino, Phys. Lett. B 37, 95 (1971)ADSCrossRefGoogle Scholar
  159. 159.
    E. Witten, Nucl. Phys. B 223, 422 (1983)ADSCrossRefGoogle Scholar
  160. 160.
    F. Jegerlehner, O.V. Tarasov, Phys. Lett. B 639, 299 (2006)ADSCrossRefGoogle Scholar
  161. 161.
    J. Mondejar, K. Melnikov, Phys. Lett. B 718, 1364 (2013)ADSCrossRefGoogle Scholar
  162. 162.
    G. ’t Hooft, Recent Developments in Gauge Theories, in Proceedings of the Summer-Institute, Cargese, France, 1979, ed. by G. ’t Hooft, et al. NATO Advanced Study Institute Series B: Physics, vol. 59 (Plenum Press, New York, 1980)Google Scholar
  163. 163.
    L. Rosenberg, Phys. Rev. 129, 2786 (1963)ADSCrossRefGoogle Scholar
  164. 164.
    A. Vainshtein, Phys. Lett. B 569, 187 (2003)ADSCrossRefGoogle Scholar
  165. 165.
    M. Knecht, S. Peris, M. Perrottet, E. de Rafael, JHEP 0403, 035 (2004)ADSCrossRefGoogle Scholar
  166. 166.
    J. Gasser, H. Leutwyler, Annals Phys. 158, 142 (1984); Nucl. Phys. B 250, 465 (1985)Google Scholar
  167. 167.
    M. Gell-Mann, R.J. Oakes, B. Renner, Phys. Rev. 175, 2195 (1968)ADSCrossRefGoogle Scholar
  168. 168.
    J. Gasser. H. Leutwyler, Phys. Rept. 87, 77 (1982)Google Scholar
  169. 169.
    K.G. Wilson, Phys. Rev. 179, 1499 (1969); K.G. Wilson, J.B. Kogut, Phys. Rept. 12, 75 (1974); V.A. Novikov, M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 249, 445 (1985) [Yad. Fiz. 41, 1063 (1985)]Google Scholar
  170. 170.
    M.A. Shifman, World Sci. Lect. Notes Phys. 62, 1 (1999) (Chap. 1,2)Google Scholar
  171. 171.
    B.L. Ioffe, A.V. Smilga, Nucl. Phys. B 232, 109 (1984)ADSCrossRefGoogle Scholar
  172. 172.
    S. Peris, M. Perrottet, E. de Rafael, JHEP 9805, 011 (1998); M. Knecht, S. Peris, M. Perrottet, E. de Rafael, Phys. Rev. Lett. 83, 5230 (1999); M. Knecht, A. Nyffeler. Eur. Phys. J. C 21, 659 (2001)Google Scholar
  173. 173.
    J. Bijnens, L. Girlanda, P. Talavera, Eur. Phys. J. C 23, 539 (2002)ADSCrossRefGoogle Scholar
  174. 174.
    G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B 321, 311 (1989)ADSCrossRefGoogle Scholar
  175. 175.
    G. Ecker, J. Gasser, H. Leutwyler, A. Pich, E. de Rafael, Phys. Lett. B 223, 425 (1989)ADSCrossRefGoogle Scholar
  176. 176.
    G. ’t Hooft, Nucl. Phys. B 72, 461 (1974); ibid. 75, 461 (1974)Google Scholar
  177. 177.
    A.V. Manohar, Hadrons in the \(1/N\) Expansion, in At the frontier of Particle Physics, ed M. Shifman, vol. 1 (World Scientific, Singapore 2001), pp. 507–568Google Scholar
  178. 178.
    E. de Rafael, Phys. Lett. B 322, 239 (1994)ADSCrossRefGoogle Scholar
  179. 179.
    C. Gnendiger, D. Stöckinger, H. Stöckinger-Kim, Phys. Rev. D 88, 053005 (2013)ADSCrossRefGoogle Scholar
  180. 180.
    S.M. Barr, A. Zee, Phys. Rev. Lett. 65, 21 (1990) [Erratum-ibid. 65, 2920 (1990)]Google Scholar
  181. 181.
    F. Jegerlehner, Z. Phy., C 32, 195 (1986)Google Scholar
  182. 182.
    V.A. Smirnov, Mod. Phys. Lett. A 10, 1485 (1995)ADSCrossRefGoogle Scholar
  183. 183.
    S. Heinemeyer, D. Stöckinger, G. Weiglein, Nucl. Phys. B 699, 103 (2004)ADSCrossRefGoogle Scholar
  184. 184.
    T. Gribouk, A. Czarnecki, Phys. Rev. D 72, 053016 (2005)ADSCrossRefGoogle Scholar
  185. 185.
    H.G. Fargnoli, C. Gnendiger, S. Paßehr, D. Stöckinger, H. Stöckinger-Kim, PoS LL 2014, 067 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Deutsches Elektronen-Synchrotron (DESY)ZeuthenGermany

Personalised recommendations