Skip to main content

Convergent Menus of Social Choice Rules

  • Conference paper
  • First Online:
Group Decision and Negotiation. A Socio-Technical Perspective (GDN 2017)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 293))

Included in the following conference series:

Abstract

Suzuki and Horita [11] proposed the notion of convergence as a new solution for the procedural choice problem. Given a menu of feasible social choice rules (SCRs) \( F \) and a set of options \( X \), a preference profile \( L^{0} \) is said to (weakly) converge to \( C \,\subseteq\, X \) if every rule to choose the rule (or every rule to choose the rule to choose the rule, and so on) ultimately designates C under a consequential sequence of meta-preference profiles. Although its frequency is shown, for example, under a large society with F = {plurality, Borda, anti-plurality}, a certain failure (trivial deadlock) occurs with small probability. The objective of this article is to find a convergent menu (a menu that can “always” derive the convergence). The results show that (1) several menus of well-known SCRs, such as {Borda, Hare, Black}, are convergent and that (2) the menu {plurality, Borda, anti-plurality} and a certain class of scoring menus can be expanded so that they become convergent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    They are Neutrality, i.e., each SCR in the menu is neutral, and Difference, i.e., there are no pairs of SCRs \( f,g \) in the menu that are “identical.”

  2. 2.

    Their definition is a little different from Houy [6]’s. They say a menu of SCRs is stable if there is at least one SCR that chooses itself.

  3. 3.

    In this article, we suppose that the society uses the fixed set of SCRs, \( f_{1} , \ldots ,f_{m} \) for any level. The distinction between \( f_{j}^{1} \) and \( f_{j}^{2} \) by the superscripts is made based on the supposed agenda.

  4. 4.

    Whether a profile \( L^{0} \) weakly converges or not depends on what kind of menu \( F \) the society considers, and so it is more precise to say “\( L^{0} \) weakly converges with respect to the menu \( F \).” However, in the subsequent argument, because the menu \( F \) is explicit from the context we simply say “\( L^{0} \) weakly converges to \( C \,\subseteq\, X \)”. Also, we do not specify individuals’ preference extension systems \( \left\{ {e_{i} } \right\}_{i \,\in\, N} \) in the definition of convergence. Strictly speaking, a profile \( L^{0} \) is defined as weakly converging to \( C \,\subseteq\, X \) if and only if, for combinations of all preference extension systems \( \left\{ {e_{i} } \right\}_{i \,\in\, N} \), the required sequence of CI profiles exists.

  5. 5.

    As a straightforward corollary of Proposition 2 in Suzuki and Horita [11], we can verify that Riker’s profile never weakly converges to another subset \( C^{'} \,\subseteq \,X,C^{'} \ne \left\{ D \right\} \). So, the victory of Douglas is actually supported in a stronger sense at this profile L 0 under {f P , f B ,f A }.

  6. 6.

    It is quite hard to investigate menus including four or more SCRs because the Barvinok computer software, which is used to determine the probability introduced below, does not work if there are four or more candidates. This is why we focus only on menus of three SCRs in this subsection, while our next subsection shows a result on a menu of four SCRs.

  7. 7.

    For actual verification, we used the function “FindInstance” in the software Mathematica.

References

  1. Barbera, S., Bossert, W., Pattanaik, P.K.: Ranking Sets of Objects. Kluwer Academic Publishers, Dordrecht (2004)

    Book  Google Scholar 

  2. Barbera, S., Jackson, M.O.: Choosing how to choose: self-stable majority rules and constitutions. Q. J. Econ. 119, 1011–1048 (2004)

    Article  Google Scholar 

  3. Diss, M., Louichi, A., Merlin, V., Smaoui, H.: An example of probability computations under the IAC assumption: the stability. Math. Soc. Sci. 64, 57–66 (2012). doi:10.1016/j.mathsocsci.2011.12.005

    Article  Google Scholar 

  4. Diss, M., Merlin, V.: On the stability of a triplet of scoring rules. Theor. Decis. 69, 289–316 (2010). doi:10.1007/s11238-009-9187-6

    Article  Google Scholar 

  5. Gardenfors, P.: Manipulation of social choice functions. J. Econ. Theor. 13, 217–228 (1976)

    Article  Google Scholar 

  6. Houy, N. (2004). A note on the impossibility of a set of constitutions stable at different levels∗

    Google Scholar 

  7. Kannai, Y., Peleg, B.: A note on the extension of an order on a set to the power set. J. Econ. Theor. 32, 172–175 (1984)

    Article  Google Scholar 

  8. Koray, S.: Self-selective social choice functions verify arrow and Gibbard-Satterthwaite theorems. Econometrica 68, 981–995 (2000)

    Article  Google Scholar 

  9. Koray, S., Slinko, A.: Self-selective social choice functions. Soc. Choice Welf. 31, 129–149 (2006)

    Article  Google Scholar 

  10. Riker, W.H.: Liberalism Against Populism: A Confrontation Between the Theory of Democracy and the Theory of Social Choice. Freeman, San Francisco (1982)

    Google Scholar 

  11. Suzuki, T., Horita, M.: Plurality, Borda count, or anti-plurality: regress convergence phenomenon in the procedural choice. In: Bajwa, D., Koeszegi, S., Vetschera, R. (eds.) Group Decision and Negotiation. Theory, Empirical Evidence, and Application. LNBIP, vol. 274, pp. 43–56. Springer, Cham (2017). doi:10.1007/978-3-319-52624-9_4

    Chapter  Google Scholar 

  12. Tabarrok, A., Spector, L.: Would the Borda count have avoided the Civil War? J. Theor. Polit. 11, 261–288 (1999). doi:10.1177/0951692899011002006

    Article  Google Scholar 

  13. Verdoolaege, S., Beyls, K., Bruynooghe, M., et al.: Analytical computation of ehrhart polynomials and its applications for embedded systems. In: 2nd Work Optimizations DSP Embedded System, pp. 1–12 (2004)

    Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI, grant number 15J07352.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Suzuki .

Editor information

Editors and Affiliations

Appendix A

Appendix A

Proof of Lemma 1.

Given a menu \( F \) and a sequence of CI profiles \( L^{0} , \ldots ,L^{k - 1} \) which satisfy the stated conditions, let

$$ F_{x} : = \left\{ {f \in F\left| {C_{f} } \right.\left[ {L^{0} ,L^{1} , \ldots ,L^{k - 1} } \right] = \left\{ x \right\}} \right\}, $$
$$ F_{y} \text{ := }\left\{ {f \in F\left| C \right.\left[ {f{:}L^{0} ,L^{1} , \ldots ,L^{k - 1} } \right] = \left\{ y \right\}} \right\}, $$

and let \( \alpha \text{ := }\left| {F_{x} } \right| \) and \( \beta \text{ := }\left| {F_{y} } \right| \). We label the elements as \( F_{x} = \left\{ {g_{1} ,g_{2} , \ldots ,g_{\alpha } } \right\} \) and \( F_{y} = \left\{ {h_{1} ,h_{2} , \ldots ,h_{\beta } } \right\} \). Also \( N_{x} = \left\{ {\left. {i\,{ \in }\,N} \right|xL_{i}^{0} y} \right\} \), \( N_{y} = \left\{ {\left. {i\,{ \in }\,N} \right|yL_{i}^{0} x} \right\} \), \( n_{x} = \left| {N_{x} } \right| \), and \( n_{y} = \left| {N_{y} } \right| \). Since \( \alpha + \beta = 3 \), we have two possible cases: (a) \( \left( {\alpha ,\beta } \right) = \left( {2,1} \right) \) and (b) \( \left( {\alpha ,\beta } \right) = \left( {1,2} \right) \).

(a) The case of \( \left( {\varvec{\alpha},\varvec{\beta}} \right) = \left( {\bf 2,1} \right) \)

Define \( L^{k} \,\in\, {\mathcal{L}}^{k} \left[ {L^{0} , \ldots ,L^{k - 1} } \right] \) as follows.

$$ L_{i}^{k} :\left\{ {\begin{array}{*{20}c} {g_{1} ,g_{2} ,h_{1} } & {if\,i \,\in\, N_{x} } \\ {h_{1} ,g_{1} ,g_{2} } & {if\,i \,\in\, N_{y} .} \\ \end{array} } \right. $$

It is easy to see that every \( f \,\in\, {\mathcal{F}} \) chooses a subset of \( \left\{ {g_{1} ,g_{2} } \right\} \). So, \( L^{0} \) weakly converges to \( \left\{ x \right\} \).

(b) The case of \( \left( {\varvec{\alpha},\varvec{\beta}} \right) = \left( {\bf 1,2} \right) \)

Define \( L^{k} \,\in\, {\mathcal{L}}^{k} \left[ {L^{0} ,L^{1} , \ldots ,L^{k - 1} } \right] \) as follows.

$$ L_{i}^{k} :\left\{ {\begin{array}{*{20}l} {g_{1} ,h_{1} ,h_{2} }& {for} &~ {\left( {n_{y} + 1} \right) \,{\text{individuals}}\,{\text{in}} \,N_{x} } \\ {g_{1} ,h_{2} ,h_{1} } & { for} &~{n_{x} - \left( {n_{y} + 1} \right) \,{\text{individuals }}{\text{in}}\,N_{x} } \\ {h_{1} ,h_{2} ,g_{1} } & {for} &~{\left\lfloor\frac{n}{2}\right\rfloor - \left( {n_{y} + 1} \right)\,{\text{individuals }} {\text{in}}\, N_{y} } \\ {h_{2} ,h_{1},g_{1} } & {for} &~ {the\, other\, individuals.} \\\end{array} } \right. $$

Intuitively, \( L^{k} \) is a profile such that the score of \( g_{1} \) is the largest and the scores of \( h_{1} \) and \( h_{2} \) are the smallest. First, it is easy to see that each level-\( \left( {k + 1} \right) \) \( f_{P} ,f_{H} ,f_{\text{C}} ,f_{Bl} ,f_{M} \) chooses \( \left\{ {g_{1} } \right\} \).

Consider \( f_{B} \). For simplicity, we denote by \( s\left( f \right) \) the score of \( f \,\in\, F^{k} \) evaluated by \( f_{B} \). Since each \( i \,\in\, N_{x} \) ranks \( g_{1} \) at the first position and each \( i \,\in\, N_{y} \) ranks it at the third, we have \( s\left( {g_{1} } \right) = n_{x} \). Since \( \left\lfloor\frac{n}{2}\right\rfloor \) individuals rank \( h_{1} \) above \( h_{2} \) and \( n - \left\lfloor\frac{n}{2}\right\rfloor \, {=}\,\) individuals rank \( h_{2} \) above \( h_{1} \), we have \( s\left( {h_{2} } \right) \ge s\left( {h_{1} } \right) \). Furthermore,

$$ \begin{aligned} s\left( {h_{2} } \right) & = \frac{1}{2}\left[ {\left\{ {n_{x} - \left( {n_{y} + 1} \right)} \right\} + \left\{ {\left\lfloor\frac{n}{2}\right\rfloor - \left( {n_{y} + 1} \right)} \right\}} \right] + \left( {2n_{y} + 1 -\left\lfloor\frac{n}{2}\right\rfloor} \right) \\ & = \frac{1}{2}n_{x} + n_{y} - \frac{1}{2} \cdot \left\lfloor\frac{n}{2}\right\rfloor \\ & \le \frac{1}{2}n_{x} + n_{y} - \frac{1}{2} \cdot n_{y} \left( {\because \left\lfloor\frac{n}{2}\right\rfloor \ge n_{y} } \right) \\ & < n_{x} = s\left( {g_{1} } \right) \left( {\because n_{x} > n_{y} } \right). \\ \end{aligned} $$

Therefore, \( f_{B}^{k + 1} \left( {L^{k} } \right) = \left\{ {g_{1} } \right\} \). It is straightforward to check that \( f_{N}^{k + 1} \left( {L^{k} } \right) = \left\{ {g_{1} } \right\} \).

Finally, consider \( f_{A} \). Since \( n_{y} \) individuals rank \( g_{1} \) at the third position and \( \left( {n_{y} + 1} \right) \) individuals rank \( h_{2} \) at the third, it follows that \( f_{A}^{k + 1} \left( {L^{k} } \right) \,\subseteq\, \left\{ {g_{1} ,h_{1} } \right\} \). Recall that each \( f \,\in\, {\mathcal{F}\backslash }\left\{ {f_{A} } \right\} \) chooses \( \left\{ {g_{1} } \right\} \) at \( L^{k} \). If \( f_{A}^{k + 1} \left( {L^{k} } \right) = \left\{ {g_{1} } \right\} \), this implies that \( L^{0} \) weakly converges to \( \left\{ x \right\} \). If \( f_{A}^{k + 1} \left( {L^{k} } \right) = \left\{ {h_{1} } \right\} \), we can apply the case (a) to the CI sequence \( L^{0} ,L^{1} , \ldots ,L^{k} \) (instead of the sequence \( L^{0} ,L^{1} , \ldots ,L^{k - 1} \)) to find the convergence. Suppose \( f_{A}^{k + 1} \left( {L^{k} } \right) = \left\{ {g_{1} ,h_{1} } \right\} \). Then, it follows that

$$ n_{x} - \left( {n_{y} + 1} \right) = n_{x} . $$

This implies that \( n_{x} = 2n_{y} + 1 \). Then, let \( M^{k} \,\in\, {\mathcal{L}}^{k} \left[ {L^{0} ,L^{1} , \ldots ,L^{k - 1} } \right] \) as

$$ M_{i}^{k} :\left\{ {\begin{array}{*{20}l} { {g_{1} ,h_{1} ,h_{2} } \,\,\,for\,\,\, \left( {n_{y} + 2} \right) \rm{individuals} \,\rm{in} \,\,{\it N}_{\it x} } \hfill \\ { {g_{1} ,h_{2} ,h_{1} } \,\,\,for \,\,\,\left( {n_{y} - 1} \right) \rm{individuals} \, \rm{in} \,{\it N}_{\it x} } \hfill \\ { {h_{1} ,h_{2} ,g_{1} } \,\,\,for \,\,\,\left\lfloor\frac{n}{2}\right\rfloor - \left( {n_{y} + 2} \right) \rm{individuals}\, \rm{in}\, {\it N}_{\it y} } \hfill \\ { {h_{2} ,h_{1} ,g_{1} } \,\,\,for \,\,\,the \,other\, individuals.} \hfill \\ \end{array} } \right. $$

In a similar way, we can check that \( f_{P} ,f_{H} ,f_{\text{C}} ,f_{Bl} ,f_{M} ,f_{B} ,f_{N} \) chooses \( \left\{ {g_{1} } \right\} \) at \( M^{k} \). Also, we have \( f_{A}^{k + 1} \left( {M^{k} } \right) = \left\{ {h_{1} } \right\} \). So, we can apply the case (a) to the CI sequence \( L^{0} ,L^{1} , \ldots ,M^{k} \) to find the convergence. ■

Proof of Theorem 1.

Let \( f_{1} ,f_{2} ,f_{3} \) be distinct SCRs among \( f_{P} ,f_{B} ,f_{A} ,f_{H} ,f_{N} ,f_{C} ,f_{M} ,f_{Bl} \). When \( n \to \infty \) under IAC, it is easy to see that the probability of tied outcomes by some of \( f_{1}^{1} ,f_{2}^{2} ,f_{3}^{1} \) is negligible. So, we can discuss only \( L^{0} \,\in\, {\mathcal{L}}\left( X \right)^{n} \) such that each \( f_{1}^{1} \left( {L^{0} } \right),f_{2}^{1} \left( {L^{0} } \right),f_{3}^{1} \left( {L^{0} } \right) \) is a singleton.

  1. (1)

    The Case of \( \left| {\left\{ {\varvec{f}_{1} \left( {\varvec{L}^{0} } \right),\varvec{f}_{2} \left( {\varvec{L}^{0} } \right),\varvec{f}_{3} \left( {\varvec{L}^{0} } \right)} \right\}} \right| = 2 \)

Let \( \left\{ {f_{1} \left( {L^{0} } \right),f_{2} \left( {L^{0} } \right),f_{3} \left( {L^{0} } \right)} \right\} = \left\{ {x,y} \right\} \). When \( n \to \infty \), the probability of the event

$$ {\# }\left\{ {i \,\in\, N\left| {xL_{i}^{0} y} \right.} \right\} = {\# }\left\{ {i \,\in\, N\left| {yL_{i}^{0} x} \right.} \right\} $$

is negligible. Hence, we can apply Lemma 1 to derive weak convergence.

  1. (2)

    The Case of \( \left| {\left\{ {\varvec{f}_{1} \left( {\varvec{L}^{0} } \right),\varvec{f}_{2} \left( {\varvec{L}^{0} } \right),\varvec{f}_{3} \left( {\varvec{L}^{0} } \right)} \right\}} \right| = 3 \)

In this case, the level-\( 1 \) CI profile \( L^{1} \) is uniquely determined. It is also straightforward to show that the probability of tied outcomes among some of the level-\( 2 \) SCRs is negligible. If \( \left| {\left\{ {f_{1}^{2} \left( {L^{1} } \right),f_{2}^{2} \left( {L^{1} } \right),f_{3}^{2} \left( {L^{1} } \right)} \right\}} \right| = 2 \), we can apply Lemma 1 again to derive weak convergence. We next show that \( \left| {\left\{ {f_{1}^{2} \left( {L^{1} } \right),f_{2}^{2} \left( {L^{1} } \right),f_{3}^{2} \left( {L^{1} } \right)} \right\}} \right| \) cannot be 3 if the menu \( F \) is one of the \( 56 \) menus. Suppose to the contrary that it is \( 3 \). Note that

$$ {\mathcal{L}}\left( {F^{1} } \right) = \left\{ {f_{1} f_{2} f_{3} ,f_{1} f_{3} f_{2} ,f_{2} f_{1} f_{3} ,f_{2} f_{3} f_{1} ,f_{3} f_{1} f_{2} ,f_{3} f_{2} f_{1} } \right\}. $$

Let \( n_{j} \) be the number of individuals who have the \( j^{\text{th}} \) preference. For example, \( n_{1} \) and \( n_{4} \) are the numbers of individuals whose level-\( 1 \) CI preferences are \( f_{1} f_{2} f_{3} \) and \( f_{2} f_{3} f_{1} \), respectively.

From now on, the proof is similar for all 10 menus. Let us prove the case of \( F = \left\{ {f_{B} ,f_{H} ,f_{Bl} } \right\} \). Without loss of generality, we can assume \( f_{B}^{2} \left( {L^{1} } \right) = f_{1} \), \( f_{H}^{2} \left( {L^{1} } \right) = f_{2} \), and \( f_{Bl}^{2} \left( {L^{1} } \right) = f_{3} \). With \( n_{1} , \ldots ,n_{6} \), we can rephrase these conditions as follows:

$$ f_{Bo}^{2} \left( {L^{1} } \right) = f_{1}^{1} :\left\{ {\begin{array}{*{20}c} {n_{1} + 2n_{2} + n_{5} > n_{3} + 2n_{4} + n_{6} } \\ {2n_{1} + n_{2} + n_{3} > n_{4} + n_{5} + 2n_{6} } \\ \end{array} } \right. $$
$$ f_{H}^{2} \left( {L^{1} } \right) = f_{2}^{1} :\left\{ {\begin{array}{*{20}c} {\left\{ {\begin{array}{*{20}c} {n_{3} + n_{4} > n_{1} + n_{2} } \\ {n_{5} + n_{6} > n_{1} + n_{2} } \\ {n_{1} + n_{3} + n_{4} > n_{2} + n_{5} + n_{6} } \\ \end{array} } \right.} \\ {\rm or} \\ {\left\{ {\begin{array}{*{20}c} {n_{1} + n_{2} > n_{5} + n_{6} } \\ {n_{3} + n_{4} > n_{5} + n_{6} } \\ {n_{1} + n_{2} + n_{5} < n_{3} + n_{4} + n_{6} } \\ \end{array} } \right.} \\ \end{array} } \right. $$
$$f_{Bl}^{2} \left( {L^{1} } \right) = f_{3}^{1} : \left\{ {\begin{array}{*{20}l} {\left( {n_{4} + n_{5} + n_{6} > n_{1} + n_{2} + n_{3} \,{\text{and }}\,n_{2} + n_{5} + n_{6} > n_{1} + n_{3} + n_{4} } \right)} \hfill \\ {\left[ {\begin{array}{*{20}c} {\text{or}} \\ {\left( {n_{3} + n_{4} + n_{6} > n_{1} + n_{2} + n_{5} \,{\text{or }}\,n_{4} + n_{5} + n_{6} > n_{1} + n_{2} + n_{3} } \right)} \\ {\text{and}} \\ {\left( {n_{1} + n_{2} + n_{5} > n_{3} + n_{4} + n_{6} \,{\text{or }}\,n_{2} + n_{5} + n_{6} > n_{1} + n_{3} + n_{4} } \right)} \\ {\text{and}} \\ {\left( {n_{1} + n_{2} + n_{3} > n_{4} + n_{5} + n_{6} \,{\text{or}}\, n_{1} + n_{3} + n_{4} > n_{2} + n_{5} + n_{6} } \right)} \\ {\text{and}} \\ {n_{4} + n_{5} + 2n_{6} > 2n_{1} + n_{2} + n_{3} } \\ {\text{and}} \\ {n_{2} + 2n_{5} + n_{6} > n_{1} + 2n_{3} + n_{4} } \\ \end{array} } \right]} \hfill \\ \end{array} } \right. $$

With elementary verificationFootnote 6, we can see that there is no non-negative integer solution \( \left( {n_{1} ,n_{2} , \ldots ,n_{6} } \right) \) for this system of inequalities. ■

Proof of Theorem 2.

The probability of tied outcomes among level-\( 1 \) SCRs can be assumed to be negligible, and so we can expect that each \( f_{P}^{1} \left( {L^{0} } \right),f_{B}^{1} \left( {L^{0} } \right),f_{A}^{1} \left( {L^{0} } \right),\varphi^{1} \left( {L^{0} } \right) \) is a singleton. If \( \left| {F^{1} \left( {L^{0} } \right)} \right| \le 2 \), we can apply Lemma 2 of Suzuki and Horita [11] to be assured of weak convergence. Because of the definition of \( \varphi \), we know that \( \varphi \left( {L^{0} } \right) \,\subseteq \,f_{P}^{1} \left( {L^{0} } \right) \cup f_{B}^{1} \left( {L^{0} } \right) \cup f_{A}^{1} \left( {L^{0} } \right) \). So, we can assume \( \left| {F^{1} \left( {L^{0} } \right)} \right| = 3 \). Without loss of generality, we can assume \( g_{1}^{1} \left( {L^{0} } \right) = g_{2}^{1} \left( {L^{0} } \right) = \left\{ {x_{1} } \right\} \), \( g_{3}^{1} \left( {L^{0} } \right) = \left\{ {x_{2} } \right\} \), and \( g_{4}^{1} \left( {L^{0} } \right) = \left\{ {x_{3} } \right\} \), where \( F^{1} = \left\{ {g_{1}^{1} ,g_{2}^{1} ,g_{3}^{1} ,g_{4}^{1} } \right\} \).

Let \( L^{1} \,\in\, {\mathcal{L}}^{1} \left[ {L^{0} } \right] \) such that all individuals rank \( g_{1}^{1} \) above \( g_{2}^{1} \). Note that the probability of tied outcomes among some of \( f_{P}^{2} ,f_{B}^{2} ,f_{A}^{2} ,\varphi^{2} \) can also be assumed to be negligible. So, we can expect that \( f_{P}^{2} \left( {L^{1} } \right),f_{B}^{2} \left( {L^{1} } \right),f_{A}^{2} \left( {L^{1} } \right),\varphi^{2} \left( {L^{1} } \right) \) are also singletons. Then, \( L^{1} \) is characterized with be the number \( n_{1} , \ldots ,n_{6} \) that expresses the number of individuals who have each specific type of preference, i.e., \( g_{1}^{1} ,g_{2}^{1} ,g_{3}^{1} ,g_{4}^{1} \) (\( n_{1} \) individuals), \( g_{1}^{1} ,g_{2}^{1} ,g_{3}^{1} ,g_{4}^{1} \) (\( n_{2} \) individuals), \( g_{3}^{1} ,g_{1}^{1} ,g_{2}^{1} ,g_{4}^{1} \) (\( n_{3} \) individuals), \( g_{3}^{1} ,g_{4}^{1} ,g_{1}^{1} ,g_{2}^{1} \) (\( n_{4} \) individuals), \( g_{4}^{1} ,g_{1}^{1} ,g_{2}^{1} ,g_{3}^{1} \) (\( n_{5} \) individuals), and \( g_{4}^{1} ,g_{3}^{1} ,g_{1}^{1} ,g_{2}^{1} \) (\( n_{6} \) individuals), where \( n = n_{1} + n_{2} + n_{3} + n_{4} + n_{5} + n_{6} \). Note also that if \( \left| {F^{2} \left( {L^{1} } \right)} \right| \le 2 \), then weak convergence is also guaranteed. So, we assume that \( \left| {F^{2} \left( {L^{1} } \right)} \right| = 3 \). At this time, \( \varphi^{2} \left( {L^{1} } \right) \) is either \( f_{P}^{2} \left( {L^{1} } \right) \) or \( f_{B}^{2} \left( {L^{1} } \right) \). We can also expect \( n_{i} > 0 \) for \( i = 1,2,3,4,5,6 \) when \( n \to \infty \), and so we have that \( f_{A}^{2} \left( {L^{1} } \right) = \left\{ {g_{1}^{1} } \right\} \). Now, we have only two possibilities: (1) \( f_{B}^{2} \left( {L^{1} } \right) = \varphi^{2} \left( {L^{1} } \right) = \left\{ {g_{3}^{1} } \right\} \), \( f_{P}^{2} \left( {L^{1} } \right) = \left\{ {g_{4}^{1} } \right\} \), and \( f_{A}^{2} \left( {L^{1} } \right) = \left\{ {g_{1}^{1} } \right\} \), or (2) \( f_{B}^{2} \left( {L^{1} } \right) = \left\{ {g_{3}^{1} } \right\} \), \( f_{B}^{2} \left( {L^{1} } \right) = \varphi^{2} \left( {L^{1} } \right) = \left\{ {g_{4}^{1} } \right\} \), and \( f_{A}^{2} \left( {L^{1} } \right) = \left\{ {g_{1}^{1} } \right\} \).

  1. (1)

    The case of \( f_{B}^{2} \left( {L^{1} } \right) = \varphi^{2} \left( {L^{1} } \right) = \left\{ {g_{3}^{1} } \right\} \), \( f_{P}^{2} \left( {L^{1} } \right) = \left\{ {g_{4}^{1} } \right\} \), and \( f_{A}^{2} \left( {L^{1} } \right) = \left\{ {g_{1}^{1} } \right\} \).

Let \( L^{2} \,\in\, \left( {{\mathcal{L}}\left( {F^{2} } \right)} \right)^{n} \) be as follows: \( f_{A}^{2} ,f_{B}^{2} ,\varphi^{2} ,f_{P}^{2} \) (\( n_{1} \) individuals), \( f_{A}^{2} ,f_{P}^{2} ,f_{B}^{2} ,\varphi^{2} \) (\( n_{2} \) individuals), \( f_{B}^{2} ,\varphi^{2} ,f_{A}^{2} ,f_{P}^{2} \) (\( n_{3} \) individuals), \( f_{B}^{2} ,\varphi^{2} ,f_{P}^{2} ,f_{A}^{2} \) (\( n_{4} \) individuals), \( f_{P}^{2} ,f_{A}^{2} ,f_{B}^{2} ,\varphi^{2} \) (\( n_{5} \) individuals), and \( f_{P}^{2} ,f_{B}^{2} ,\varphi^{2} ,f_{A}^{2} \) (\( n_{6} \) individuals). Clearly, we have \( L^{2} \,\in\, {\mathcal{L}}^{2} \left[ {L^{0} ,L^{1} } \right] \).

Because \( n_{1} , \ldots ,n_{6} \) are positive, we obtain \( f_{A}^{3} \left( {L^{2} } \right) = \left\{ {f_{B}^{2} } \right\} \). Furthermore, \( f_{P}^{2} \left( {L^{1} } \right) = \left\{ {g_{4}^{1} } \right\} \) and so the plurality score of \( g_{4}^{1} \) is greater than those of \( g_{1}^{1} \) and \( g_{3}^{1} \):

$$ \left\{ {\begin{array}{*{20}c} {n_{5} + n_{6} > n_{1} + n_{2.} } \\ {n_{5} + n_{6} > n_{3} + n_{4} .} \\ \end{array} } \right. $$

This also shows that the plurality score of \( f_{P}^{2} \) is greater than those of \( f_{A}^{2} \) and \( f_{B}^{2} \) at \( L^{2} \). Hence, we have that \( f_{P}^{3} \left( {L^{2} } \right) = \left\{ {f_{P}^{2} } \right\} \). Next, we show that \( f_{B}^{3} \left( {L^{2} } \right) = \left\{ {f_{B}^{2} } \right\} \).

Because \( f_{B}^{2} \left( {L^{1} } \right) = \left\{ {g_{3}^{1} } \right\} \), the Borda scores at \( L^{1} \) are as follows:

$$ \begin{aligned} s_{B} \left( {g_{3}^{1} } \right) & > s_{B} \left( {g_{1}^{1} } \right) \Leftrightarrow n_{3} + n_{4} + \frac{2}{3}n_{6} + \frac{1}{3}n_{1} > n_{1} + n_{2} + \frac{2}{3}\left( {n_{3} + n_{5} } \right) + \frac{1}{3}\left( {n_{4} + n_{6} } \right). \\ s_{B} \left( {g_{3}^{1} } \right) & > s_{B} \left( {g_{4}^{1} } \right) \Leftrightarrow n_{3} + n_{4} + \frac{2}{3}n_{6} + \frac{1}{3}n_{1} > n_{5} + n_{6} + \frac{2}{3}n_{4} + \frac{1}{3}n_{2} . \\ \end{aligned} $$

At \( L^{2} \), we have:

$$ \begin{aligned} s_{B} \left( {f_{P}^{2} } \right) & = n_{5} + n_{6} + \frac{2}{3}n_{2} + \frac{1}{3}n_{4} . \\ s_{B} \left( {f_{B}^{2} } \right) & = n_{3} + n_{4} + \frac{2}{3}\left( {n_{1} + n_{6} } \right) + \frac{1}{3}\left( {n_{2} + n_{5} } \right). \\ s_{B} \left( {f_{A}^{2} } \right) & = n_{1} + n_{2} + \frac{2}{3}n_{5} + \frac{1}{3}n_{3} . \\ s_{B} \left( {\varphi^{2} } \right) & < s_{B} \left( {f_{B}^{2} } \right). \\ \end{aligned} $$

These equations show that \( s_{B} \left( {f_{B}^{2} } \right) > \hbox{max} \left\{ {s_{B} \left( {f_{P}^{2} } \right),s_{B} \left( {f_{A}^{2} } \right),s_{B} \left( {\varphi^{2} } \right)} \right\} \).

  1. (2)

    The case of \( f_{B}^{2} \left( {L^{1} } \right) = \left\{ {g_{3}^{1} } \right\} \), \( f_{P}^{2} \left( {L^{1} } \right) = \varphi \left( {L^{1} } \right) = \left\{ {g_{4}^{1} } \right\} \), and \( f_{A}^{2} \left( {L^{1} } \right) = \left\{ {g_{1}^{1} } \right\} \). \( f_{B}^{2} \left( {L^{1} } \right) = \left\{ {g_{3}^{1} } \right\} \), and so the score of \( g_{3}^{1} \) at \( L^{1} \) is strictly greater than those of \( g_{1}^{1} \) and \( g_{4}^{1} \). Formally, we have that:

    $$ \begin{aligned} n_{3} + n_{4} + \frac{2}{3}n_{6} + \frac{1}{3}n_{1} & > n_{1} + n_{2} + \frac{2}{3}\left( {n_{3} + n_{5} } \right) + \frac{1}{3}\left( {n_{4} + n_{6} } \right). \\ n_{3} + n_{4} + \frac{2}{3}n_{6} + \frac{1}{3}n_{1} & > n_{5} + n_{6} + \frac{2}{3}n_{4} + \frac{1}{3}n_{2} . \\ \end{aligned} $$
    (1)

Let \( L^{2} \,\in\, {\mathcal{L}}^{2} \left[ {L^{0} ,L^{1} } \right] \) be such that:

$$ \begin{aligned} & n_{1}\, {\text{individuals}}{:}\, f_{A}^{2} ,f_{B}^{2} ,f_{P}^{2} ,\varphi^{2} . \\ & n_{2}\, {\text{individuals}}{:}\, f_{A}^{2} ,f_{P}^{2} ,\varphi^{2} ,f_{B}^{2} . \\ & n_{3} \,{\text{individuals}}{:}\, f_{B}^{2} ,f_{A}^{2} ,f_{P}^{2} ,\varphi^{2} . \\ & n_{4} \,{\text{individuals}}{:}\, f_{B}^{2} ,f_{P}^{2} ,\varphi^{2} ,f_{A}^{2} . \\ & n_{5}\, {\text{individuals}}{:}\, f_{P}^{2} ,\varphi^{2} ,f_{A}^{2} ,f_{B}^{2} . \\ & n_{6}\, {\text{individuals}}{:}\, f_{P}^{2} ,\varphi^{2} ,f_{B}^{2} ,f_{A}^{2} . \\ \end{aligned} $$

In words, this is a consequentially induced preference where everyone ranks \( f_{P}^{2} \) above \( \varphi^{2} \). Similar to (1), we can check that \( f_{P}^{3} \left( {L^{2} } \right) = f_{A}^{3} \left( {L^{2} } \right) = \left\{ {f_{P}^{2} } \right\} \). Furthermore, the scores of \( f_{A}^{2} ,f_{P}^{2} ,f_{B}^{2} ,\varphi^{2} \) evaluated by \( f_{B}^{3} \) are as follows:

$$ \begin{aligned} s_{B} \left( {f_{A}^{2} } \right) & = n_{1} + n_{2} + \frac{2}{3}n_{3} + \frac{1}{3}n_{5} . \\ s_{B} \left( {f_{B}^{2} } \right) & = n_{3} + n_{4} + \frac{2}{3}n_{1} + \frac{1}{3}n_{6} . \\ s_{B} \left( {f_{P}^{2} } \right) & = n_{5} + n_{6} + \frac{2}{3}\left( {n_{2} + n_{4} } \right) + \frac{1}{3}\left( {n_{1} + n_{3} } \right). \\ \end{aligned} $$

With the inequalities (1) we have that \( s_{B} \left( {f_{B}^{2} } \right) > s_{B} \left( {f_{A}^{2} } \right) \). Note that ties between \( f_{B}^{2} ,f_{P}^{2} \) occur only if

$$ n_{3} + n_{4} + \frac{2}{3}n_{1} + \frac{1}{3}n_{6} = n_{5} + n_{6} + \frac{2}{3}\left( {n_{2} + n_{4} } \right) + \frac{1}{3}\left( {n_{1} + n_{3} } \right). $$

This event is negligible as \( n \to \infty \).■

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Suzuki, T., Horita, M. (2017). Convergent Menus of Social Choice Rules. In: Schoop, M., Kilgour, D. (eds) Group Decision and Negotiation. A Socio-Technical Perspective. GDN 2017. Lecture Notes in Business Information Processing, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-319-63546-0_4

Download citation

Publish with us

Policies and ethics