Skip to main content

Thyroid Disorders in Climacteric Women

  • Chapter
  • First Online:
Pre-Menopause, Menopause and Beyond

Part of the book series: ISGE Series ((ISGE))

  • 1253 Accesses

Abstract

The appearance of menopause is combined with the incidence of many diseases typical of middle age, i.e., thyroid disorders, osteoporosis, and cardiovascular diseases. Thyroid disorders, especially subclinical hypothyroidism and subclinical hyperthyroidism, are frequent medical conditions among postmenopausal women. The prevalence of metabolic syndrome and osteoporosis significantly increases in postmenopausal women [1]. Many symptoms appear due to decreased estrogen level; however, chronic diseases influence quality of life as well. One of them is thyroid diseases, which are associated with risk factors for osteoporosis and cardiovascular diseases. Some symptoms of chronic diseases may mimic or modify the clinical expression of climacteric symptoms. Menopause and thyroid disease may present with similar symptoms, i.e., sweating, heart palpitations, insomnia, irritability, or mood changes, which suggest menopause, hyperthyroidism, or both. In addition, weight gain, constipation, skin atrophy, and hair atrophy are climacteric symptoms as well as symptoms of hypothyroidism [2]. With aging, the level of thyroid-stimulating hormone (TSH) remains within normal range and occasionally has a tendency to increase [3]. Reduction of thyroid iodine uptake, free thyroid hormone synthesis, and catabolism of free thyroxine (FT4) are observed. In addition, reverse triiodothyronine (rT3) level increases [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Siemińska L, Wojciechowska C, Walczak K, Borowski A, Marek B et al (2015) Associations between metabolic syndrome, serum thyrotropin, and thyroid antibodies status in postmenopausal women, and the role of interleukin-6. Endokrynol Pol 66:394–403

    Article  PubMed  Google Scholar 

  2. Roberts CG, Ladenson PW (2004) Hypothyroidism. Lancet 363:793–803

    Article  CAS  PubMed  Google Scholar 

  3. Schindler AE (2003) Thyroid function and postmenopause. Gynecol Endocrinol 17:79–85

    Article  CAS  PubMed  Google Scholar 

  4. Bączyk G, Opala T, Kleka P, Chuchracki M (2012) Multifactorial analysis of risk factors for reduced bone mineral density among postmenopausal women. Arch Med Sci 8:332–341

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pedrera-Zamorano JD, Roncero-Martin R, Calderon-Garcia JF, Santos-Vivas M, Vera V et al (2015) Treatment of subclinical hypothyroidism does not affect bone mass as determined by dual-energy X-ray absorptiometry, peripheral quantitative computed tomography and quantitative bone ultrasound in Spanish women. Arch Med Sci 11:1008–1014

    PubMed  PubMed Central  Google Scholar 

  6. Blum MR, Bauer DC, Collet TH, Fink HA, Cappola AR, da Costa BR et al (2015) Subclinical thyroid dysfunction and fracture risk: a meta-analysis. JAMA 313:2055–2065

    Article  PubMed  PubMed Central  Google Scholar 

  7. Murphy E, Gluer CC, Reid DM et al (2010) Thyroid function within the upper normal range is associated with reduced bone mineral density and an increased risk of nonvertebral fractures in healthy euthyroid postmenopausal women. J Clin Endocrinol Metab 95:3173–3181

    Article  CAS  PubMed  Google Scholar 

  8. Abe E, Marians RC, Yu W et al (2003) TSH is a negative regulator of skeletal remodeling. Cell 115:151–162

    Article  CAS  PubMed  Google Scholar 

  9. Ma R, Morshed S, Latif R, Zaidi M, Davies TF (2011) The influence of thyroid-stimulating hormone and thyroid-stimulating hormone receptor antibodies on osteoclastogenesis. Thyroid 21:897–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vestergaard P, Rejnmark L, Mosekilde L (2005) Influence of hyper and hypothyroidism, and the effects of treatment with antithyroid drugs and levothyroxine on fracture risk. Calcif Tissue Int 77:139–144

    Article  CAS  PubMed  Google Scholar 

  11. García-Martín A, Reyes-García R, García-Castro JM, Rozas-Moreno P, Escobar-Jiménez F, Muñoz-Torres M (2012) Role of serum FSH measurement on bone resorption in postmenopausal women. Endocrine 41:302–308

    Article  PubMed  Google Scholar 

  12. Shinkov AD, Borissova AM, Kovatcheva RD, Atanassova IB, Vlahov JD, Dakovska LN (2014) Age and menopausal status affect osteoprotegerin and osteocalcin levels in women differently, irrespective of thyroid function. Clin Med Insights Endocrinol Diabetes 7:19–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Polovina S, Popovic V, Duntas L, Milic N, Micic D (2013) Frax score calculations in postmenopausal women with subclinical hypothyroidism. Hormones (Athens) 12:439–448

    Google Scholar 

  14. Mysliwiec J, Adamczyk M, Nikolajuk A, Gorska M (2011) Interleukin-6 and its considerable role in the pathogenesis of thyrotoxicosis-related disturbances of bone turnover in postmenopausal women. Endokrynol Pol 62:299–302

    CAS  PubMed  Google Scholar 

  15. Biondi B, Bartalena L, Cooper DS, Hegedüs L, Laurberg P, Kahaly GJ (2015) The 2015 European thyroid association guidelines on diagnosis and treatment of endogenous subclinical hyperthyroidism. Eur Thyroid J 4:149–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Faber J, Jensen IW, Petersen L, Nygaard B, Hegedus L, Siersbaek-Nielsen K (1998) Normalization of serum thyrotropin by mean of radioiodine treatment in subclinical hyperthyroidism. Effect of bone loss in postmenopausal women. Clin Endocrinol 48:285–290

    Article  CAS  Google Scholar 

  17. Abrahamsen B, Jørgensen HL, Laulund AS, Nybo M, Brix TH, Hegedüs L (2014) Low serum thyrotropin level and duration of suppression as a predictor of major osteoporotic fractures. The OPENTHYRO Register Cohort. J Bone Miner Res 29:2040–2050

    Article  CAS  PubMed  Google Scholar 

  18. Abrahamsen B, Jørgensen HL, Laulund AS, Nybo M, Bauer DC et al (2015) The excess risk of major osteoporotic fractures in hypothyroidism is driven by cumulative hyperthyroid as opposed to hypothyroid time: an observational register-based time-resolved cohort analysis. J Bone Miner Res 30:898–905

    Article  CAS  PubMed  Google Scholar 

  19. Wirth CD, Blum MR, da Costa BR, Baumgartner C, Collet TH et al (2014) Subclinical thyroid dysfunction and the risk for fractures: a systematic review and meta-analysis. Ann Intern Med 161:189–199

    Article  PubMed  PubMed Central  Google Scholar 

  20. Baqi L, Payer J, Killinger Z, Susienkova K, Jackuliak P et al (2010) The level of TSH appeared favourable in maintaining bone mineral density in postmenopausal women. Endocr Regul 44:9–15.

    Google Scholar 

  21. Fadejev VV, Morgunova TB, Melnichenko GA, Dedov II (2010) Combined therapy with L-Thyroxine and L-Triiodthyronine compared to L-Thyroxine alone in the treatment of primary hypothyroidism. Hormones (Athens), 9:245–252.

    Google Scholar 

  22. La Vignera S, Vicari E, Tumino S et al (2008) L-thyroxin treatment and post-menopausal osteoporosis: relevance of the risk profile present in clinical history. Minerva Ginecol 60:475–484

    PubMed  Google Scholar 

  23. Le Grys VA, Funk MJ, Lorenz CE, Giri A, Jackson RD et al (2013) Subclinical hypothyroidism and risk for myocardial infarction among postmenopausal women. J Clin Endocrinol Metab 98:2308–2317

    Article  CAS  Google Scholar 

  24. Giri A, Edwards TL, LeGrys VA, Lorenz CE, Funk MJ et al (2014) Subclinical hypothyroidism and risk for incident ischemic stroke among postmenopausal women. Thyroid 24:1210–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pearce EN (2012) Update in lipid alterations in subclinical hypothyroidism. J Clin Endocrinol Metab 97:326–333

    Article  CAS  PubMed  Google Scholar 

  26. Tunbridge WM, Evered DC, Hall R et al (1977) Lipid profiles and cardiovascular disease in the Whickham area with particular reference to thyroid failure. Clin Endocrinol 7:495–508

    Article  CAS  Google Scholar 

  27. Psaty BM, Anderson M, Kronmal RA et al (2004) The association between lipid levels and the risks of incident myocardial infarction, stroke, and total mortality: the Cardiovascular Health Study. J Am Geriatr Soc 52:1639–1647

    Article  PubMed  Google Scholar 

  28. Arafah BM (2001) Increased need for thyroxine in women with hypothyroidism during estrogen therapy. New Engl J Med 344:1743–1749

    Article  CAS  PubMed  Google Scholar 

  29. Chaker L, Baumgartner C, Ikram MA, Dehghan A, Medici M et al (2014) Subclinical thyroid dysfunction and the risk of stroke: a systematic review and meta-analysis. Eur J Epidemiol 29:791–800

    Article  CAS  PubMed  Google Scholar 

  30. Collet TH, Gussekloo J, Bauer DC et al (2012) Thyroid Studies Collaboration: subclinical hyperthyroidism and the risk of coronary heart disease and mortality. Arch Intern Med 172:799–809

    Article  CAS  PubMed  Google Scholar 

  31. Gencer B, Collet TH, Virgini V et al (2012) Thyroid Studies Collaboration: subclinical thyroid dysfunction and the risk of heart failure events: an individual participant data analysis from 6 prospective cohorts. Circulation 126:1040–1049

    Article  CAS  PubMed  Google Scholar 

  32. Caini S, Gibelli B, Palli D, Saieva C, Ruscica M, Gandini S (2015) Menstrual and reproductive history and use of exogenous sex hormones and risk of thyroid cancer among women: a meta-analysis of prospective studies. Cancer Causes Control 26:511–518

    Article  PubMed  Google Scholar 

  33. Manole D, Schildknecht B, Gosnell B, Adams E, Derwahl M (2001) Estrogen promotes growth of human thyroid tumor cells by different molecular mechanisms. J Clin Endocrinol Metab 86:1072–1077

    CAS  PubMed  Google Scholar 

  34. Kim MH, Park YR, Lim DJ, Yoon KH, Kang MI et al (2010) The relationship between thyroid nodules and uterine fibroids. Endocr J 57:615–621

    Article  PubMed  Google Scholar 

  35. Bülow Pedersen I, Knudsen N, Jørgensen T, Perrild H, Ovesen L, Laurberg P (2002) Large differences in incidences of overt hyper- and hypothyroidism associated with a small difference in iodine intake: a prospective comparative register-based population survey. J Clin Endocrinol Metab 87:4462–4469

    Article  PubMed  Google Scholar 

  36. Schouten BJ, Brownlie BEW, Frampton CM, Turner JG (2001) Subclinical thyrotoxicosis in an outpatient population—predictors of outcome. Clin Endocrinol 74:257–261

    Article  Google Scholar 

  37. Rosario PW (2008) The natural history of subclinical hyperthyroidism in patients below the age of 65 years. Clin Endocrinol 68:491–492

    Article  Google Scholar 

  38. Pearce SHS, Brabant G, Duntas LH, Monzani F, Peeters RP et al (2013) 2013 ETA guideline: management of subclinical hypothyroidism. Eur Thyroid J 2:215–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Canaris GJ, Manowitz NR, Mayor G, Ridgway EC (2000) The Colorado thyroid disease prevalence study. Arch Intern Med 160:526–534

    Article  CAS  PubMed  Google Scholar 

  40. Benvenga S, Bartolone L, Pappalardo MA et al (2008) Altered intestinal absorption of L-thyroxine caused by coffee. Thyroid 18:293–301

    Article  CAS  PubMed  Google Scholar 

  41. Liwanpo L, Hershman JM (2009) Conditions and drugs interfering with thyroxine absorption. Best Pract Res Clin Endocrinol Metab 23:781–792

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Milewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 International Society of Gynecological Endocrinology

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brona, A., Milewicz, A., Kuliczkowska-Płaksej, J., Bolanowski, M. (2018). Thyroid Disorders in Climacteric Women. In: Birkhaeuser, M., Genazzani, A. (eds) Pre-Menopause, Menopause and Beyond. ISGE Series. Springer, Cham. https://doi.org/10.1007/978-3-319-63540-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63540-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63539-2

  • Online ISBN: 978-3-319-63540-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics