You Made Him Be Alive: Children’s Perceptions of Animacy in a Humanoid Robot

  • David CameronEmail author
  • Samuel Fernando
  • Emily C. Collins
  • Abigail Millings
  • Michael Szollosy
  • Roger Moore
  • Amanda Sharkey
  • Tony Prescott
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)


Social robots are becoming more sophisticated; in many cases they offer complex, autonomous interactions, responsive behaviors, and biomimetic appearances. These features may have significant impact on how people perceive and engage with robots; young children may be particularly influenced due to their developing ideas of agency. Young children are considered to hold naive beliefs of animacy and a tendency to mis-categorise moving objects as being alive but, with development, children can demonstrate a biological understanding of animacy. We experimentally explore the impact of children’s age and a humanoid’s movement on children’s perceptions of its animacy.

Our humanoid’s behavior varied in apparent autonomy, from motionless, to manually operated, to covertly operated. Across conditions, younger children rated the robot as being significantly more person-like than older children did. We further found an interaction effect: younger children classified the robot as significantly more machine-like if they observed direct operation in contrast observing the motionless or apparently autonomous robot. Our findings replicate field results, supporting the modal model of the developmental trajectory for children’s understanding of animacy. We outline a program of research to both deepen the theoretical understanding of children’s animacy beliefs and develop robotic characters appropriate across key stages of child development.


Human-robot interaction Humanoid Animacy Psychology 



This work was supported by European Union Seventh Framework Programme (FP7-ICT-2013-10) under grant agreement no. 611971.


  1. 1.
    Sharkey, A., Sharkey, N.: Children, the elderly, and interactive robots. IEEE Robot. Autom. Mag. 18, 32–38 (2011)CrossRefGoogle Scholar
  2. 2.
    Blancas, M., Vouloutsi, V., Grechuta, K., Verschure, P.F.M.J.: Effects of the robot’s role on human-robot interaction in an educational scenario. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) Living Machines 2015. LNCS(LNAI), vol. 9222, pp. 391–402. Springer, Cham (2015). doi: 10.1007/978-3-319-22979-9_39 CrossRefGoogle Scholar
  3. 3.
    Cameron, D., Fernando, S., Collins, E., Millings, A., Moore, R., Sharkey, A., Prescott, T.: Impact of robot responsiveness and adult involvement on children’s social behaviours in human-robot interaction. In: Proceedings of the AISB Convention (2016)Google Scholar
  4. 4.
    Opfer, J.E., Gelman, S.A.: Development of the animate-inanimate distinction. Wiley-Blackwell Handbook Childhood Cogn. Dev. 2, 213–238 (2011)Google Scholar
  5. 5.
    Carey, S.: Conceptual change in childhood (1985)Google Scholar
  6. 6.
    Piaget, J.: The Child’s Conception of the World. Rowman & Littlefield, Totowa (1951)Google Scholar
  7. 7.
    Bartneck, C., Kanda, T., Mubin, O., Al Mahmud, A.: Does the design of a robot influence its animacy and perceived intelligence? Int. J. Soc. Robot. 1, 195–204 (2009)CrossRefGoogle Scholar
  8. 8.
    Bullock, M., Gelman, R., Baillargeon, R.: The development of causal reasoning. In: The Developmental Psychology of Time, pp. 209–254 (1982)Google Scholar
  9. 9.
    Carey, S.: The Origin of Concepts. Oxford University Press, Oxford (2011)Google Scholar
  10. 10.
    Goren, C.C., Sarty, M., Wu, P.Y.: Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics 56(4), 544–549 (1975)Google Scholar
  11. 11.
    Hood, B.M., Willen, J.D., Driver, J.: Adult’s eyes trigger shifts of visual attention in human infants. Psychol. Sci. 9, 131–134 (1998)CrossRefGoogle Scholar
  12. 12.
    Driver, J., Davis, G., Ricciardelli, P., Kidd, P., Maxwell, E., Baron-Cohen, S.: Gaze perception triggers reflexive visuospatial orienting. Vis. Cogn. 6, 509–540 (1999)CrossRefGoogle Scholar
  13. 13.
    Johnson, S., Slaughter, V., Carey, S.: Whose gaze will infants follow? the elicitation of gaze-following in 12-month-olds. Dev. Sci. 1, 233–238 (1998)CrossRefGoogle Scholar
  14. 14.
    Rochat, P., Striano, T., Morgan, R.: Who is doing what to whom? young infants’ developing sense of social causality in animated displays. Perception 33, 355–369 (2004)CrossRefGoogle Scholar
  15. 15.
    Schlottmann, A., Surian, L.: Do 9-month-olds perceive causation-at-a-distance? Perception 28(9), 1105–1113 (1999)CrossRefGoogle Scholar
  16. 16.
    Hamlin, J.K., Wynn, K., Bloom, P.: Social evaluation by preverbal infants. Nature 450(7169), 557–559 (2007)CrossRefGoogle Scholar
  17. 17.
    Hamlin, J.K., Wynn, K.: Young infants prefer prosocial to antisocial others. Cogn. Dev. 26, 30–39 (2011)CrossRefGoogle Scholar
  18. 18.
    Heider, F., Simmel, M.: An experimental study of apparent behavior. Am. J. Psychol. 57, 243–259 (1944)CrossRefGoogle Scholar
  19. 19.
    Carey, S.: Sources of conceptual change. In: Conceptual Development: Piagets Legacy, pp. 293–326 (1999)Google Scholar
  20. 20.
    Kahn, P., Reichert, A., Gary, H., Kanda, T., Ishiguro, H., Shen, S., Ruckert, J., Gill, B.: The new ontological category hypothesis in human-robot interaction. In: 6th International Conference on Human-Robot Interaction, pp. 159–160. IEEE (2011)Google Scholar
  21. 21.
    Somanader, M.C., Saylor, M.M., Levin, D.T.: Remote control and children’s understanding of robots. J. Exp. Child Psychol. 109, 239–247 (2011)CrossRefGoogle Scholar
  22. 22.
    Okita, S.Y., Schwartz, D.L.: Young children’s understanding of animacy and entertainment robots. Int. J. Hum. Robot. 3, 393–412 (2006)CrossRefGoogle Scholar
  23. 23.
    Kahn, P.H., Friedman, B., Perez-Granados, D.R., Freier, N.G.: Robotic pets in the lives of preschool children. Interact. Stud. 7(3), 405–436 (2006)Google Scholar
  24. 24.
    Melson, G.F., Kahn, P.H., Beck, A., Friedman, B., Roberts, T., Garrett, E., Gill, B.T.: Children’s behavior toward and understanding of robotic and living dogs. J. Appl. Dev. Psychol. 30(2), 92–102 (2009)CrossRefGoogle Scholar
  25. 25.
    Cameron, D., Fernando, S., Millings, A., Moore, R., Sharkey, A., Prescott, T.: Children’s age influences their perceptions of a humanoid robot as being like a person or machine. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) Living Machines 2015. LNCS(LNAI), vol. 9222, pp. 348–353. Springer, Cham (2015). doi: 10.1007/978-3-319-22979-9_34 CrossRefGoogle Scholar
  26. 26.
    Cameron, D., Fernando, S., Cowles-Naja, E., Perkins, A., Millings, A., Collins, E., Szollosy, M., Moore, R., Sharkey, A., Prescott, T.: Age differences in animacy beliefs observed in childrens questions for a humanoid. In: Proceedings of the Conference Towards Autonomous Robotic Systems (in Press)Google Scholar
  27. 27.
    Collins, E.C., Prescott, T.J., Mitchinson, B.: Saying it with light: a pilot study of affective communication using the MIRO robot. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) Living Machines 2015. LNCS(LNAI), vol. 9222, pp. 243–255. Springer, Cham (2015). doi: 10.1007/978-3-319-22979-9_25 CrossRefGoogle Scholar
  28. 28.
    Saylor, M.M., Somanader, M., Levin, D.T., Kawamura, K.: How do young children deal with hybrids of living and non-living things: the case of humanoid robots. Brit. J. Dev. Psychol. 28, 835–851 (2010)CrossRefGoogle Scholar
  29. 29.
    Fukuda, H., Ueda, K.: Interaction with a moving object affects ones perception of its animacy. Int. J. Soc. Robot. 2, 187–193 (2010)CrossRefGoogle Scholar
  30. 30.
    Vouloutsi, V., et al.: Towards a synthetic tutor assistant: the EASEL project and its architecture. In: Lepora, N.F.F., Mura, A., Mangan, M., Verschure, P.F.M.J., Desmulliez, M., Prescott, T.J.J. (eds.) Living Machines 2016. LNCS, vol. 9793, pp. 353–364. Springer, Cham (2016). doi: 10.1007/978-3-319-42417-0_32 CrossRefGoogle Scholar
  31. 31.
    Reidsma, D., et al.: The EASEL project: towards educational human-robot symbiotic interaction. In: Lepora, N.F.F., Mura, A., Mangan, M., Verschure, P.F.M.J., Desmulliez, M., Prescott, T.J.J. (eds.) Living Machines 2016. LNCS, vol. 9793, pp. 297–306. Springer, Cham (2016). doi: 10.1007/978-3-319-42417-0_27 CrossRefGoogle Scholar
  32. 32.
    Cameron, D., Fernando, S., Millings, A., Szollosy, M., Collins, E., Moore, R., Sharkey, A., Prescott, T.: Congratulations, it’s a boy! bench-marking children’s perceptions of the robokind zeno-R25. In: Alboul, L., Damian, D., Aitken, J.M.M. (eds.) TAROS 2016. LNCS, vol. 9716, pp. 33–39. Springer, Cham (2016). doi: 10.1007/978-3-319-40379-3_4 Google Scholar
  33. 33.
    Hanson, D., Baurmann, S., Riccio, T., Margolin, R., Dockins, T., Tavares, M., Carpenter, K.: Zeno: a cognitive character. AI Mag., 9–11 (2009)Google Scholar
  34. 34.
    Mori, M., MacDorman, K.F., Kageki, N.: The uncanny valley [from the field]. IEEE Robot. Autom. Mag. 19, 98–100 (2012)CrossRefGoogle Scholar
  35. 35.
    Moore, R.K.: A bayesian explanation of the uncanny valleyeffect and related psychological phenomena. Sci. Rep. 2, 864 (2012)CrossRefGoogle Scholar
  36. 36.
    Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., Marnier, B., Serre, J., Maisonnier, B.: Mechatronic design of nao humanoid. In: International Conference on Robotics and Automation, pp. 769–774. IEEE (2009)Google Scholar
  37. 37.
    Mitchinson, B., Prescott, T.J.: MIRO: a robot “Mammal” with a biomimetic brain-based control system. In: Lepora, N.F.F., Mura, A., Mangan, M., Verschure, P.F.M.J., Desmulliez, M., Prescott, T.J.J. (eds.) Living Machines 2016. LNCS, vol. 9793, pp. 179–191. Springer, Cham (2016). doi: 10.1007/978-3-319-42417-0_17 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • David Cameron
    • 1
    Email author
  • Samuel Fernando
    • 2
  • Emily C. Collins
    • 1
  • Abigail Millings
    • 1
  • Michael Szollosy
    • 1
  • Roger Moore
    • 2
  • Amanda Sharkey
    • 2
  • Tony Prescott
    • 1
  1. 1.Department of PsychologyUniversity of SheffieldSheffieldUK
  2. 2.Department of Computer ScienceUniversity of SheffieldSheffieldUK

Personalised recommendations