Self-organisation of Spatial Behaviour in a Kilobot Swarm

  • Calum ImrieEmail author
  • J. Michael Herrmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)


Applications of robotic swarms often face limitations in sensing and motor capabilities. We aim at providing evidence that the modest equipment of the individual robots can be compensated by the interaction within the swarm. If the robots, such as the well-known Kilobots, have no sense of place or directionality, their collective behaviour can still result in meaningful spatial organisation. We show that a variety of patterns can be formed based on a reaction-diffusion system and that these patters can be used by the robots to solve spatial tasks. In this contribution, we present first results for applications of this approach based on ‘physically realistic’ Kilobot simulations.


  1. 1.
    Adam, J.A.: Mathematics in Nature: Modeling Patterns in the Natural World. Princeton University Press, Princeton (2006)zbMATHGoogle Scholar
  2. 2.
    Correll, N., Martinoli, A.: Modeling and designing self-organized aggregation in a swarm of miniature robots. Int. J. Robot. Res. 30(5), 615–626 (2011)CrossRefGoogle Scholar
  3. 3.
    Dimidov, C., Oriolo, G., Trianni, V.: Random walks in swarm robotics: an experiment with kilobots. In: Dorigo, M., Birattari, M., Li, X., López-Ibáñez, M., Ohkura, K., Pinciroli, C., Stützle, T. (eds.) ANTS 2016. LNCS, vol. 9882, pp. 185–196. Springer, Cham (2016). doi: 10.1007/978-3-319-44427-7_16 CrossRefGoogle Scholar
  4. 4.
    Erskine, A., Joyce, T., Herrmann, J.M.: Parameter selection in particle swarm optimisation from stochastic stability analysis. In: Dorigo, M., Birattari, M., Li, X., López-Ibáñez, M., Ohkura, K., Pinciroli, C., Stützle, T. (eds.) ANTS 2016. LNCS, vol. 9882, pp. 161–172. Springer, Cham (2016). doi: 10.1007/978-3-319-44427-7_14 CrossRefGoogle Scholar
  5. 5.
    Guo, H., Meng, Y., Jin, Y.: A cellular mechanism for multi-robot construction via evolutionary multi-objective optimization of a gene regulatory network. BioSystems 98(3), 193–203 (2009)CrossRefGoogle Scholar
  6. 6.
    Jin, Y., Meng, Y.: Morphogenetic robotics: an emerging new field in developmental robotics. IEEE Trans. Syst. Man Cybern. C 41(2), 145–160 (2011)CrossRefGoogle Scholar
  7. 7.
    Li, W., Gauci, M., Groß, R.: Turing learning: a metric-free approach to inferring behavior and its application to swarms. Swarm Intell. 10(3), 211–243 (2016)CrossRefGoogle Scholar
  8. 8.
    Oh, H., Shirazi, A.R., Sun, C., Jin, Y.: Bio-inspired self-organising multi-robot pattern formation: a review. Robot. Auton. Syst. 91, 83–100 (2017)CrossRefGoogle Scholar
  9. 9.
    Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system for collective behaviors. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3293–3298 (2012)Google Scholar
  10. 10.
    Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237(641), 37–72 (1952)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Informatics, Institute for Perception, Action and BehaviourUniversity of EdinburghEdinburghUK

Personalised recommendations