Advertisement

Bio-inspired Tensegrity Soft Modular Robots

  • D. ZappettiEmail author
  • S. Mintchev
  • J. Shintake
  • D. Floreano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)

Abstract

In this paper, we introduce a design principle to develop novel soft modular robots based on tensegrity structures and inspired by the cytoskeleton of living cells. We describe a novel strategy to realize tensegrity structures using planar manufacturing techniques, such as 3D printing. We use this strategy to develop icosahedron tensegrity structures with programmable variable stiffness that can deform in a three-dimensional space. We also describe a tendon-driven contraction mechanism to actively control the deformation of the tensegrity modules. Finally, we validate the approach in a modular locomotory worm as a proof of concept.

Keywords

Modular robots Soft robotics Tensegrity structures 

References

  1. 1.
    Burks, A.: Essays on Cellular Automata. University of Illinois Press, Urbana (1970)zbMATHGoogle Scholar
  2. 2.
    Fukuda, T., Nakagawa, S., Kawauchi, Y., Buss M.: Self organizing robots based on cell structures – CEBOT. In: IEEE International Conference on Robotics and Automation, pp. 145–150, 31 October–2 November 1989Google Scholar
  3. 3.
    Moubarak, P., Ben-Tzvi, P.: Modular and reconfigurable mobile robotics. Robot. Auton. Syst. 60(12), 1648–1663 (2012)CrossRefGoogle Scholar
  4. 4.
    Yim, B.M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S.: Modular self-reconfigurable robot systems: challenges and opportunities for the future. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)CrossRefGoogle Scholar
  5. 5.
    Morin, S.A., et al.: Elastomeric tiles for the fabrication of inflatable structures. Adv. Funct. Mater. 24(35), 5541–5549 (2014)CrossRefGoogle Scholar
  6. 6.
    Vergara, A., Lau, Y., Mendoza-Garcia, R.-F., Zagal, J.C.: Soft modular robotic cubes: toward replicating morphogenetic movements of the embryo. PLoS ONE 12(1), e0169179 (2017)CrossRefGoogle Scholar
  7. 7.
    Onal, C.D., Rus, D.: A modular approach to soft robotics. In: 4th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, pp. 1038–1045, 24–27 June 2012Google Scholar
  8. 8.
    Lee, J.Y., Kim, W.B., Choi, W.Y., Cho, K.J.: Soft robotic blocks: introducing SoBL, a fast-build modularized design block. IEEE Robot. Autom. Mag. 23(3), 30–41 (2016)CrossRefGoogle Scholar
  9. 9.
    Yim, S., Sitti, M.: SoftCubes: toward a soft modular matter. In: IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, pp. 530–536, 6–10 May 2013Google Scholar
  10. 10.
    Wang, W., Rodrigue, H., Ahn, S.-H.: Deployable soft composite structures. Sci. Rep. 6 (2016)Google Scholar
  11. 11.
    Jenett, B., et al.: Digital morphing wing: active wing shaping concept using composite lattice-based cellular structures. Soft Robot. 4, 33–48 (2016)CrossRefGoogle Scholar
  12. 12.
    Germann, J., Maesani, A., Pericet, Camara R., Floreano, D.: Soft cell for programmable self-assembly of robotic modules. Soft Robot. 1(4), 239–245 (2014)CrossRefGoogle Scholar
  13. 13.
    Germann, J.: Soft cells for modular robots. Ph.D. dissertation, nr. 6217, EPFL, CH (2014)Google Scholar
  14. 14.
    Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D.: Molecular Biology of the Cell. Garland Publishing, New York (1983)Google Scholar
  15. 15.
    Ingber, D.E., Wang, N., Stamenovic, D.: Tensegrity, cellular biophysics, and the mechanics of living systems. Rep. Prog. Phys. (2014)Google Scholar
  16. 16.
    Ingber, D.E.: The architecture of life. Sci. Am. 278(1), 48–57 (1998)CrossRefGoogle Scholar
  17. 17.
    Krause, F., Wilke, J., Vogt, L., Banzer, W.: Intermuscular force transmission along myofascial chains: a systematic review. J. Anat. 77(12) (2006)Google Scholar
  18. 18.
    Yu, C., Haller, K., Ingber, D., Nagpal, R.: Morpho: a Self-deformable modular robot inspired by cellular structure. In: IEEE/RSJ International Conference on Intelligent Robot and Systems, Nice, France, 22–26 September 2008Google Scholar
  19. 19.
    Rieffel, J., Trimmer, B., Lipson, H.: Mechanism as mind - what tensegrities and caterpillars can teach us about soft robotics. In: Artificial Life: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems, Cambridge, MA, pp. 506–512, 5–8 August 2008Google Scholar
  20. 20.
    Bruce, J., Caluwaerts, K., Iscen, A., Sabelhaus, A.P., SunSpiral, V.: Design and evolution of a modular tensegrity platform. In: IEEE International Conference on Robotics and Automation, (ICRA), Hong Kong, China, 31 May– 7 June 2014Google Scholar
  21. 21.
    de Oliveira, M.C., Skelton, R.E.: Tensegrity Systems, Chap. 1. Springer, New York (2009). doi: 10.1007/978-0-387-74242-7 CrossRefzbMATHGoogle Scholar
  22. 22.
    Agogino, A., SunSpiral V., Atkinson, D.: SuperBall bot – structure for planetary landing and exploration. Final Report for the NASA Innovative Advanced Concepts, NASA Ames Reasearch Center, Intelligent Systems Division, July 2013Google Scholar
  23. 23.
    Umedachi, T., Vikas, V., Trimmer, B.A., et al.: Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots. Bionspir. Biomim. 11(2) (2016)Google Scholar
  24. 24.
    Kanu, E.N., Daltorio, K.A., Quinn, R.D., Chiel, H.J.: Correlating kinetics and kinematics of earthworm peristaltic locomotion. In: 4th International Conference of Living Machines, Barcelona, Spain, pp. 92–96, 28–31 July 2015Google Scholar
  25. 25.
    Mirletz, B.T., Park, I., Quinn, R.D., Sunspiral, V.: Towards bridging the reality gap between tensegrity simulation and robotic hardware. In: IEEE/RSJ International Conference on Intelligent Systems (IROS), Hamburg, Germany, 28 September–2 October 2015Google Scholar
  26. 26.
    Singh, M., Haverinen, H.M., Dhagat, P., Jabbour, G.E.: Inkjet printing-process and its applications. Adv. Mater. 22(6), 673–685 (2010)CrossRefGoogle Scholar
  27. 27.
    Gad-el-Hak, M.: The MEMS Handbook. CRC Press, Boca Raton (2010)zbMATHGoogle Scholar
  28. 28.
    Whitney, J.P., Sreetharan, P.S., Ma, K.Y., Wood, R.J.: Pop-up book MEMS. J. Micromech. Microeng. 21(11) (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • D. Zappetti
    • 1
    Email author
  • S. Mintchev
    • 1
  • J. Shintake
    • 1
  • D. Floreano
    • 1
  1. 1.Laboratory of Intelligent SystemsEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations