Skip to main content

Self-organising Thermoregulatory Huddling in a Model of Soft Deformable Littermates

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10384))

Included in the following conference series:

Abstract

Thermoregulatory huddling behaviours dominate the early experiences of developing rodents, and constrain the patterns of sensory and motor input that drive neural plasticity. Huddling is a complex emergent group behaviour, thought to provide an early template for the development of adult social systems, and to constrain natural selection on metabolic physiology. However, huddling behaviours are governed by simple rules of interaction between individuals, which can be described in terms of the thermodynamics of heat exchange, and can be easily controlled by manipulation of the environment temperature. Thermoregulatory huddling thus provides an opportunity to investigate the effects of early experience on brain development in a social, developmental, and evolutionary context, through controlled experimentation. This paper demonstrates that thermoregulatory huddling behaviours can self-organise in a simulation of rodent littermates modelled as soft-deformable bodies that exchange heat during contact. The paper presents a novel methodology, based on techniques in computer animation, for simulating the early sensory and motor experiences of the developing rodent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schank, J.C., Alberts, J.R.: The developmental emergence of coupled activity as cooperative aggregation in rat pups. Proc. Biol. Sci. 267(1459), 2307–2315 (2000)

    Article  Google Scholar 

  2. Gilbert, C., McCafferty, D., Le Maho, Y., Martrette, J.M., Giroud, S., Blanc, S., Ancel, A.: One for all and all for one: the energetic benefits of huddling in endotherms. Biol. Rev. 85(3), 545–569 (2010). Cambridge Philosophical Society

    Google Scholar 

  3. Canals, M., Bozinovic, F.: Huddling behavior as critical phase transition triggered by low temperatures. Complexity 17(1), 35–43 (2011)

    Article  Google Scholar 

  4. Alberts, J.R.: Huddling by rat pups: ontogeny of individual and group behavior. Dev. Psychobiol. 49(1), 22–32 (2007)

    Article  Google Scholar 

  5. Schank, J.C., Alberts, J.R.: Self-organized huddles of rat pups modeled by simple rules of individual behavior. J. Theor. Biol. 189(1), 11–25 (1997)

    Article  Google Scholar 

  6. Glancy, J., Gross, R., Stone, J., Wilson, S.P.: A self-organising model of thermoregulatory huddling. PLoS Comput. Biol. 11(9), e1004283 (2015)

    Article  Google Scholar 

  7. Canals, M.R., Rosenmann, M., Bozinovic, F.: Geometrical aspects of the energetic effectiveness of huddling in small mammals. Acta Theriol. 42(3), 321–328 (1997)

    Article  Google Scholar 

  8. May, C.J., Schank, J.C., Joshi, S., Tran, J., Taylor, R.J., Scott, I.E.: Rat pups and random robots generate similar self-organized and intentional behavior. Complexity 12(1), 53–66 (2006)

    Article  Google Scholar 

  9. Schank, J.C.: The development of locomotor kinematics in neonatal rats: an agent-based modeling analysis in group and individual contexts. J. Theor. Biol. 254(4), 826–842 (2008)

    Article  Google Scholar 

  10. Wilson, S.P.: Self-organised criticality in the evolution of a thermodynamic model of rodent thermoregulatory huddling. PLoS Comput. Biol. 13(1), e1005378 (2017)

    Article  Google Scholar 

  11. Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. ACM Trans. Graph. 24(3), 471–478 (2005)

    Article  Google Scholar 

  12. Urashima, H., Wilson, S.P.: A self-organising animat body map. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds.) Living Machines 2014. LNCS, vol. 8608, pp. 439–441. Springer, Cham (2014). doi:10.1007/978-3-319-09435-9_55

    Google Scholar 

  13. Stafford, T., Wilson, S.P.: Self-organisation can generate the discontinuities in the somatosensory map. Neurocomputing 70, 1932–1937 (2007)

    Article  Google Scholar 

  14. Wilson, S.P., Law, J.S., Mitchinson, B., Prescott, T.J., Bednar, J.A.: Modeling the emergence of whisker direction maps in rat barrel cortex. PLoS ONE 5(1), e8778 (2010)

    Article  Google Scholar 

  15. McGregor, S., Polani, D., Dautenhahn, K.: Generation of tactile maps for artificial skin. PLoS ONE 6(11), e26561 (2011)

    Article  Google Scholar 

  16. Wilson, S.P., Bednar, J.A.: What, if anything, are topological maps for? Dev. Neurobiol. 75(6), 667–681 (2015)

    Article  Google Scholar 

  17. Bednar, J.A., Wilson, S.P.: Cortical maps. Neuroscientist 22(6), 604–617 (2016)

    Article  Google Scholar 

  18. Glancy, J., Stone, J.V., Wilson, S.P.: How self-organization can guide evolution. Roy. Soc. Open Sci. 3(11) (2016)

    Google Scholar 

  19. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  MathSciNet  Google Scholar 

  20. Wilson, S.P.: The synthetic littermate. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 450–453. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39802-5_63

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart P. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wilson, S.P. (2017). Self-organising Thermoregulatory Huddling in a Model of Soft Deformable Littermates. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63537-8_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63536-1

  • Online ISBN: 978-3-319-63537-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics