Self-organising Thermoregulatory Huddling in a Model of Soft Deformable Littermates

  • Stuart P. WilsonEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)


Thermoregulatory huddling behaviours dominate the early experiences of developing rodents, and constrain the patterns of sensory and motor input that drive neural plasticity. Huddling is a complex emergent group behaviour, thought to provide an early template for the development of adult social systems, and to constrain natural selection on metabolic physiology. However, huddling behaviours are governed by simple rules of interaction between individuals, which can be described in terms of the thermodynamics of heat exchange, and can be easily controlled by manipulation of the environment temperature. Thermoregulatory huddling thus provides an opportunity to investigate the effects of early experience on brain development in a social, developmental, and evolutionary context, through controlled experimentation. This paper demonstrates that thermoregulatory huddling behaviours can self-organise in a simulation of rodent littermates modelled as soft-deformable bodies that exchange heat during contact. The paper presents a novel methodology, based on techniques in computer animation, for simulating the early sensory and motor experiences of the developing rodent.


Self-organisation Thermoregulation Huddling Shape-matching 


  1. 1.
    Schank, J.C., Alberts, J.R.: The developmental emergence of coupled activity as cooperative aggregation in rat pups. Proc. Biol. Sci. 267(1459), 2307–2315 (2000)CrossRefGoogle Scholar
  2. 2.
    Gilbert, C., McCafferty, D., Le Maho, Y., Martrette, J.M., Giroud, S., Blanc, S., Ancel, A.: One for all and all for one: the energetic benefits of huddling in endotherms. Biol. Rev. 85(3), 545–569 (2010). Cambridge Philosophical SocietyGoogle Scholar
  3. 3.
    Canals, M., Bozinovic, F.: Huddling behavior as critical phase transition triggered by low temperatures. Complexity 17(1), 35–43 (2011)CrossRefGoogle Scholar
  4. 4.
    Alberts, J.R.: Huddling by rat pups: ontogeny of individual and group behavior. Dev. Psychobiol. 49(1), 22–32 (2007)CrossRefGoogle Scholar
  5. 5.
    Schank, J.C., Alberts, J.R.: Self-organized huddles of rat pups modeled by simple rules of individual behavior. J. Theor. Biol. 189(1), 11–25 (1997)CrossRefGoogle Scholar
  6. 6.
    Glancy, J., Gross, R., Stone, J., Wilson, S.P.: A self-organising model of thermoregulatory huddling. PLoS Comput. Biol. 11(9), e1004283 (2015)CrossRefGoogle Scholar
  7. 7.
    Canals, M.R., Rosenmann, M., Bozinovic, F.: Geometrical aspects of the energetic effectiveness of huddling in small mammals. Acta Theriol. 42(3), 321–328 (1997)CrossRefGoogle Scholar
  8. 8.
    May, C.J., Schank, J.C., Joshi, S., Tran, J., Taylor, R.J., Scott, I.E.: Rat pups and random robots generate similar self-organized and intentional behavior. Complexity 12(1), 53–66 (2006)CrossRefGoogle Scholar
  9. 9.
    Schank, J.C.: The development of locomotor kinematics in neonatal rats: an agent-based modeling analysis in group and individual contexts. J. Theor. Biol. 254(4), 826–842 (2008)CrossRefGoogle Scholar
  10. 10.
    Wilson, S.P.: Self-organised criticality in the evolution of a thermodynamic model of rodent thermoregulatory huddling. PLoS Comput. Biol. 13(1), e1005378 (2017)CrossRefGoogle Scholar
  11. 11.
    Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. ACM Trans. Graph. 24(3), 471–478 (2005)CrossRefGoogle Scholar
  12. 12.
    Urashima, H., Wilson, S.P.: A self-organising animat body map. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds.) Living Machines 2014. LNCS, vol. 8608, pp. 439–441. Springer, Cham (2014). doi: 10.1007/978-3-319-09435-9_55 Google Scholar
  13. 13.
    Stafford, T., Wilson, S.P.: Self-organisation can generate the discontinuities in the somatosensory map. Neurocomputing 70, 1932–1937 (2007)CrossRefGoogle Scholar
  14. 14.
    Wilson, S.P., Law, J.S., Mitchinson, B., Prescott, T.J., Bednar, J.A.: Modeling the emergence of whisker direction maps in rat barrel cortex. PLoS ONE 5(1), e8778 (2010)CrossRefGoogle Scholar
  15. 15.
    McGregor, S., Polani, D., Dautenhahn, K.: Generation of tactile maps for artificial skin. PLoS ONE 6(11), e26561 (2011)CrossRefGoogle Scholar
  16. 16.
    Wilson, S.P., Bednar, J.A.: What, if anything, are topological maps for? Dev. Neurobiol. 75(6), 667–681 (2015)CrossRefGoogle Scholar
  17. 17.
    Bednar, J.A., Wilson, S.P.: Cortical maps. Neuroscientist 22(6), 604–617 (2016)CrossRefGoogle Scholar
  18. 18.
    Glancy, J., Stone, J.V., Wilson, S.P.: How self-organization can guide evolution. Roy. Soc. Open Sci. 3(11) (2016)Google Scholar
  19. 19.
    Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Wilson, S.P.: The synthetic littermate. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 450–453. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39802-5_63 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of SheffieldSheffieldUK

Personalised recommendations