Advertisement

3D-Printed Biohybrid Robots Powered by Neuromuscular Tissue Circuits from Aplysia californica

  • Victoria A. WebsterEmail author
  • Fletcher R. Young
  • Jill M. Patel
  • Gabrielle N. Scariano
  • Ozan Akkus
  • Umut A. Gurkan
  • Hillel J. Chiel
  • Roger D. Quinn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)

Abstract

Biohybrid robotics offers the possibility of compliant, bio-compatible actuation and adaptive behavioral flexibility via the use of muscles as robotic actuators and neural circuits as controllers. In this study, neuromuscular tissue circuits from Aplysia californica have been characterized and implemented on 3D-printed inchworm-inspired biohybrid robots, creating the first locomotive biohybrid robots with both organic actuation and organic motor-pattern control. Stimulation via the organic motor-controller is shown to result in higher muscle tension and faster device speeds as compared to external electrical stimulation.

Keywords

Biohybrid devices Organic actuators Organic controllers Biorobotics Aplysia californica 

Notes

Acknowledgments

The authors would like to thank Yanjun Zhang for assistance in actuator characterization. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0951783 and a GAANN Fellowship (Grant No. P200A150316). This study was also funded in part by grants from the National Science Foundation (Grant No. DMR-1306665), and the National Institute of Health (Grant No. R01 AR063701).

References

  1. 1.
    Cvetkovic, C., Raman, R., Chan, V., Williams, B.J., Tolish, M., Bajaj, P., Sakar, M.S., Asada, H.H., Saif, M.T.A., Bashir, R.: Three-dimensionally printed biological machines powered by skeletal muscle. PNAS 111(28), 10125–10130 (2014)CrossRefGoogle Scholar
  2. 2.
    Webster, V.A., Hawley, E.L., Akkus, O., Chiel, H.J., Quinn, R.D.: Effect of actuating cell source on locomotion of organic living machines with electrocompacted collagen skeleton. Bioinspiration Biomim. 11(3), 036012 (2016)CrossRefGoogle Scholar
  3. 3.
    Nawroth, J.C., Lee, H., Feinberg, A.W., Ripplinger, C.M., McCain, M.L., Grosberg, A., Dabiri, J.O., Parker, K.K.: A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 30(8), 792–797 (2012)CrossRefGoogle Scholar
  4. 4.
    Park, S.-J., Gazzola, M., Park, K.S., Park, S., Di Santo, V., Blevins, E.L., Lind, J.U., Campbell, P.H., Dauth, S., Capulli, A.K., Pasqualini, F.S., Ahn, S., Cho, A., Yuan, H., Maoz, B.M., Vijaykumar, R., Choi, J.-W., Deisseroth, K., Lauder, G.V., Mahadevan, L., Parker, K.K.: Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353(6295), 158–162 (2016)CrossRefGoogle Scholar
  5. 5.
    Williams, B.J., Anand, S.V., Rajagopalan, J., Saif, M.T.A.: A self-propelled biohybrid swimmer at low Reynolds number. Nat. Commun. 5(3081) (2014)Google Scholar
  6. 6.
    Ferrández, J.M., Lorente, V., DelaPaz, F., Cuadra, J.M., Álvarez-Sánchez, J.R., Fernández, E.: A biological neuroprocessor for robotic guidance using a center of area method. Neurocomputing 74(8), 1229–1236 (2011)CrossRefGoogle Scholar
  7. 7.
    De Santos, D., Lorente, V., De La Paz, F., Manuel Cuadra, J., Lvarez-Snchez, J.R., Fernández, E., Ferrández, J.M., Ferrández, J.M.: A client-server architecture for remotely controlling a robot using a closed-loop system with a biological neuroprocessor. Robot. Auton. Syst. 58(12), 1223–1230 (2010)CrossRefGoogle Scholar
  8. 8.
    Wilkinson, S.: ‘Gastrobots’ - benefits and challenges of microbial fuel cells in food powered robot applications. Auton. Robot. 9(2), 99–111 (2000)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Philamore, H., Rossiter, J., Stinchcombe, A., Ieropoulos, I.: Row-bot: an energetically autonomous artificial water boatman. In: IEEE International Conference on Intelligent Robots and Systems, pp. 3888–3893 (2015)Google Scholar
  10. 10.
    Ieropoulos, I., Melhuish, C., Greenman, J., Horsfield, I.: EcoBot-II: an artificial agent with a natural metabolism. Int. J. Adv. Robot. Syst. 2(4), 295–300 (2005)CrossRefGoogle Scholar
  11. 11.
    Webster, V.A., Chapin, K.J., Hawley, E.L., Patel, J.M., Akkus, O., Chiel, H.J., Quinn, R.D.: Aplysia californica as a novel source of material for biohybrid robots and organic machines. In: Lepora, N.F.F., Mura, A., Mangan, M., Verschure, P., Desmulliez, M., Prescott, T.J.J. (eds.) Living Machines 2016. LNCS, vol. 9793, pp. 365–374. Springer, Cham (2016). doi: 10.1007/978-3-319-42417-0_33 CrossRefGoogle Scholar
  12. 12.
    Lu, H., McManus, J.M., Cullins, M.J., Chiel, H.J.: Preparing the periphery for a subsequent behavior: motor neuronal activity during biting generates little force but prepares a retractor muscle to generate larger forces during swallowing in Aplysia. J. Neurosci. 35(12), 5051–5066 (2015)CrossRefGoogle Scholar
  13. 13.
    Hurwitz, I., Neustadter, D., Morton, D.W., Chiel, H.J., Susswein, A.J.: Activity patterns of the B31/B32 pattern initiators innervating the I2 muscle of the buccal mass during normal feeding movements in Aplysia californica. J. Neurophysiol. 75(4), 1309–1326 (1996)Google Scholar
  14. 14.
    Susswein, A.J., Rosen, S.C., Gapon, S., Kupfermann, I.: Characterization of buccal motor programs elicited by a cholinergic agonist applied to the cerebral ganglion of Aplysia californica. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 179(4), 509–524 (1996)CrossRefGoogle Scholar
  15. 15.
    Shaw, K.M., Lyttle, D.N., Gill, J.P., Cullins, M.J., Mcmanus, J.M., Lu, H., Thomas, P.J., Chiel, H.J.: The significance of dynamical architecture for adaptive responses to mechanical loads during rhythmic behavior. J. Comput. Neurosci. 38, 25–51 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Horchler, A.D., Daltorio, K.A., Chiel, H.J., Quinn, R.D.: Designing responsive pattern generators: stable heteroclinic channel cycles for modeling and control. Bioinspiration Biomim. 10(2), 26001 (2015)CrossRefGoogle Scholar
  17. 17.
    Yu, S.N., Crago, P.E., Chiel, H.J.: Biomechanical properties and a kinetic simulation model of the smooth muscle I2 in the buccal mass of Aplysia. Biol. Cybern. 81, 505–513 (1999)CrossRefGoogle Scholar
  18. 18.
    Mortimer, J.T.: Motor Prostheses In: Comprehensive Physiology 2011, Supplement 2: Handbook of Physiology, The Nervous System, Motor Control, pp. 155–187 (1981)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Victoria A. Webster
    • 1
    Email author
  • Fletcher R. Young
    • 1
  • Jill M. Patel
    • 1
  • Gabrielle N. Scariano
    • 1
  • Ozan Akkus
    • 1
  • Umut A. Gurkan
    • 1
  • Hillel J. Chiel
    • 1
  • Roger D. Quinn
    • 1
  1. 1.Case Western Reserve UniversityClevelandUSA

Personalised recommendations