Advertisement

Describing Robotic Bat Flight with Stable Periodic Orbits

  • Alireza RamezaniEmail author
  • Syed Usman Ahmed
  • Jonathan Hoff
  • Soon-Jo Chung
  • Seth Hutchinson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)

Abstract

From a dynamic system point of view, bat locomotion stands out among other forms of flight. During a large part of bat wingbeat cycle the moving body is not in a static equilibrium. This is in sharp contrast to what we observe in other simpler forms of flight such as insects, which stay at their static equilibrium. Encouraged by biological examinations that have revealed bats exhibit periodic and stable limit cycles, this work demonstrates that one effective approach to stabilize articulated flying robots with bat morphology is locating feasible limit cycles for these robots; then, designing controllers that retain the closed-loop system trajectories within a bounded neighborhood of the designed periodic orbits. This control design paradigm has been evaluated in practice on a recently developed bio-inspired robot called Bat Bot (B2).

Keywords

Bio-inspired robot Bat Poincare Periodic orbit Control 

References

  1. 1.
    Aldridge, H.: Kinematics and aerodynamics of the greater horseshoe bat, rhinolophus ferrumequinum, in horizontal flight at various flight speeds. J. Exp. Biol. 126(1), 479–497 (1986)Google Scholar
  2. 2.
    Aldridge, H.: Body accelerations during the wingbeat in six bat species: the function of the upstroke in thrust generation. J. Exp. Biol. 130(1), 275–293 (1987)Google Scholar
  3. 3.
    Bahlman, J.W., Swartz, S.M., Breuer, K.S.: Design and characterization of a multi-articulated robotic bat wing. Bioinspiration Biomim. 8(1), 016009 (2013)CrossRefGoogle Scholar
  4. 4.
    Burridge, R.R., Rizzi, A.A., Koditschek, D.E.: Sequential composition of dynamically dexterous robot behaviors. Int. J. Rob. Res. 18(6), 534–555 (1999)CrossRefGoogle Scholar
  5. 5.
    Byrnes, C.I., Isidori, A.: A frequency domain philosophy for nonlinear systems, with applications to stabilization and to adaptive control. In: IEEE Conference on Decision and Control, pp. 1569–1573. IEEE (1984)Google Scholar
  6. 6.
    Chung, S.-J., Dorothy, M.: Neurobiologically inspired control of engineered flapping flight. J. Guidance Control Dyn. 33(2), 440–453 (2010)CrossRefGoogle Scholar
  7. 7.
    Deng, X., Schenato, L., Sastry, S.S.: Flapping flight for biomimetic robotic insects: Part II-flight control design. IEEE Trans. Rob. 22(4), 789–803 (2006)CrossRefGoogle Scholar
  8. 8.
    Deng, X., Schenato, L., Wu, W.C., Sastry, S.S.: Flapping flight for biomimetic robotic insects: Part I-system modeling. IEEE Trans. Rob. 22(4), 776–788 (2006)CrossRefGoogle Scholar
  9. 9.
    Dingwell, J.B., Cusumano, J.P.: Nonlinear time series analysis of normal and pathological human walking. Chaos Interdisc. J. Nonlinear Sci. 10(4), 848–863 (2000)CrossRefzbMATHGoogle Scholar
  10. 10.
    Dorothy, M., Chung, S.-J.: Methodological remarks on CPG-based control of flapping flight. In: AIAA Atmospheric Flight Mechanics Conference (2010)Google Scholar
  11. 11.
    Garcia, M.S.: Stability, scaling, and chaos in passive-dynamic gait models. Ph.D. thesis, Cornell University (1999)Google Scholar
  12. 12.
    Guckenheimer, J., Johnson, S.: Planar hybrid systems. In: Antsaklis, P., Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1994. LNCS, vol. 999, pp. 202–225. Springer, Heidelberg (1995). doi: 10.1007/3-540-60472-3_11 CrossRefGoogle Scholar
  13. 13.
    Hoff, J., Ramezani, A., Chung, S.-J., Hutchinson, S.: Synergistic design of a bio-inspired micro aerial vehicle with articulated wings. In: The Robotics: Science and Systems (RSS) (2016)Google Scholar
  14. 14.
    Isidori, A., Moog, C.: On the nonlinear equivalent of the notion of transmission zeros. In: Byrnes, C.I., Kurzhanski, A.B. (eds.) Modelling and Adaptive Control. LNCIS, vol. 105, pp. 146–158. Springer, Heidelberg (1988). doi: 10.1007/BFb0043181 CrossRefGoogle Scholar
  15. 15.
    Khalil, H.K., Grizzle, J.: Nonlinear Systems, vol. 3. Prentice Hall, New Jersey (1996)Google Scholar
  16. 16.
    Meurant, G.: An Introduction to Differentiable Manifolds and Riemannian Geometry, vol. 120. Academic Press, Cambridge (1986)Google Scholar
  17. 17.
    Nayfeh, A.H.: Perturbation methods in nonlinear dynamics. In: Lecture Notes in Physics, vol. 247, pp. 238–314. Springer, Heidelberg (1986)Google Scholar
  18. 18.
    Norberg, U.M.: Some advanced flight manoeuvres of bats. J. Exp. Biol. 64(2), 489–495 (1976)MathSciNetGoogle Scholar
  19. 19.
    Ramezani, A., Chung, S.-J., Hutchinson, S.: A biomimetic robotic platform to study flight specializations of bats. Sci. Rob. 2(3), eaal2505 (2017)CrossRefGoogle Scholar
  20. 20.
    Ramezani, A., Shi, X., Chung, S.-J., Hutchinson, S.: Bat Bot (B2), a biologically inspired flying machine. In: IEEE International Conference on Robotics and Automation (ICRA) (2016)Google Scholar
  21. 21.
    Ramezani, A., Shi, X., Chung, S.-J., Hutchinson, S.: Lagrangian modeling and flight control of articulated-winged bat robot. In: International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October (2015)Google Scholar
  22. 22.
    Riskin, D.K., Willis, D.J., Iriarte-Díaz, J., Hedrick, T.L., Kostandov, M., Chen, J., Laidlaw, D.H., Breuer, K.S., Swartz, S.M.: Quantifying the complexity of bat wing kinematics. J. Theor. Biol. 254(3), 604–615 (2008)CrossRefGoogle Scholar
  23. 23.
    Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.H., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion, vol. 28. CRC Press, Boca Raton (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alireza Ramezani
    • 1
    Email author
  • Syed Usman Ahmed
    • 1
    • 2
  • Jonathan Hoff
    • 1
    • 2
  • Soon-Jo Chung
    • 3
  • Seth Hutchinson
    • 1
    • 2
  1. 1.Coordinated Science LaboratoryUrbanaUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana-Champaign (UIUC)UrbanaUSA
  3. 3.Graduate Aerospace Laboratories (GAL)California Institute of TechnologyPasadenaUSA

Personalised recommendations