A Scalable Neuro-inspired Robot Controller Integrating a Machine Learning Algorithm and a Spiking Cerebellar-Like Network

  • Ismael Baira OjedaEmail author
  • Silvia Tolu
  • Henrik H. Lund
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)


Combining Fable robot, a modular robot, with a neuroinspired controller, we present the proof of principle of a system that can scale to several neurally controlled compliant modules. The motor control and learning of a robot module are carried out by a Unit Learning Machine (ULM) that embeds the Locally Weighted Projection Regression algorithm (LWPR) and a spiking cerebellar-like microcircuit. The LWPR guarantees both an optimized representation of the input space and the learning of the dynamic internal model (IM) of the robot. However, the cerebellar-like sub-circuit integrates LWPR input-driven contributions to deliver accurate corrective commands to the global IM. This article extends the earlier work by including the Deep Cerebellar Nuclei (DCN) and by reproducing the Purkinje and the DCN layers using a spiking neural network (SNN) implemented on the neuromorphic SpiNNaker platform. The performance and robustness outcomes from the real robot tests are promising for neural control scalability.


Neuro-robotics Bio-inspiration Motor control Cerebellum Machine learning Compliant control Internal model 



This work has received funding from the EU-H2020 Programme under the grant agreement no. 720270 (Human Brain Project SGA1) and from the Marie Curie project no. 705100 (Biomodular). We are thankful to David Johan Christensen and Moisés Pacheco, CEO/CTO & Co-founders of Shape Robotics, for the Fable robot. A special thank is expressed to the University of Manchester and the University of Munich for SpiNNaker.


  1. 1.
    Flash, T., Sejnowski, T.J.: Computational approaches to motor control. Curr. Opin. Neurobiol. 6(11), 655–662 (2001)CrossRefGoogle Scholar
  2. 2.
    Furber, S.B., Galluppi, F., Temple, S., Plana, L.A.: The spinnaker project. Proc. IEEE 102(5), 652–665 (2014)CrossRefGoogle Scholar
  3. 3.
    Vijayakumar, S., D’souza, A., Schaal, S.: Incremental online learning in high dimensions. Neural Comput. 17(12), 2602–2634 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ito, M.: Cerebellar circuitry as a neuronal machine. Prog. Neurobiol. 78(3), 272–303 (2006)CrossRefGoogle Scholar
  5. 5.
    Ito, M.: Control of mental activities by internal models in the cerebellum. Nat. Rev. Neurosci. 9(4), 304–313 (2008)CrossRefGoogle Scholar
  6. 6.
    Dean, P., Porrill, J., Ekerot, C.-F., Jörntell, H.: The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat. Rev. Neurosci. 11(1), 30–43 (2010)CrossRefGoogle Scholar
  7. 7.
    Verduzco-Flores, S.O., O’Reilly, R.C.: How the credit assignment problems in motor control could be solved after the cerebellum predicts increases in error. Front. Comput. Neurosci. 9 (2015)Google Scholar
  8. 8.
    Albus, J.S.: A theory of cerebellar function. Math. Biosci. 10(1), 25–61 (1971)CrossRefGoogle Scholar
  9. 9.
    Marr, D., Thach, W.T.: A theory of cerebellar cortex. In: Vaina, L. (ed.) From the Retina to the Neocortex, pp. 11–50. Springer, Boston (1991)CrossRefGoogle Scholar
  10. 10.
    Bell, C.C., Kawasaki, T.: Relations among climbing fiber responses of nearby purkinje cells. J. Neurophysiol. 35(2), 155–169 (1972). Google Scholar
  11. 11.
    Byadarhaly, K.V., Perdoor, M.C., Minai, A.A.: A modular neural model of motor synergies. Neural Networks 32, 96–108 (2012)CrossRefGoogle Scholar
  12. 12.
    Luque, N.R., Garrido, J.A., Carrillo, R.R., Coenen, O.J., Ros, E.: Cerebellar input configuration toward object model abstraction in manipulation tasks. IEEE Trans. Neural Networks 22(8), 1321–1328 (2011)CrossRefGoogle Scholar
  13. 13.
    Luque, N.R., Garrido, J.A., Carrillo, R.R., Tolu, S., Ros, E.: Adaptive cerebellar spiking model embedded in the control loop: context switching and robustness against noise. Int. J. Neural Syst. 21(05), 385–401 (2011)CrossRefGoogle Scholar
  14. 14.
    Garrido, J.A., Luque, N.R., D’Angelo, E., Ros, E.: Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation (2013)Google Scholar
  15. 15.
    Vannucci, L., Ambrosano, A., Cauli, N., Albanese, U., Falotico, E., Ulbrich, S., Pfotzer, L., Hinkel, G., Denninger, O., Peppicelli, D., Guyot, L., Arnim, A.V., Deser, S., Maier, P., Dillman, R., Klinker, G., Levi, P., Knoll, A., Gewaltig, M.O., Laschi, C.: A visual tracking model implemented on the icub robot as a use case for a novel neurorobotic toolkit integrating brain and physics simulation. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 1179–1184 (2015)Google Scholar
  16. 16.
    Tolu, S., Vanegas, M., Luque, N.R., Garrido, J.A., Ros, E.: Bio-inspired adaptive feedback error learning architecture for motor control. Biol. Cybern. 106, 507–522 (2012)CrossRefGoogle Scholar
  17. 17.
    Porrill, J., Dean, P.: Recurrent cerebellar loops simplify adaptive control of redundant and nonlinear motor systems. Neural Comput. 19(1), 170–193 (2007)CrossRefzbMATHGoogle Scholar
  18. 18.
    Tolu, S., Vanegas, M., Garrido, J.A., Luque, N.R., Ros, E.: Adaptive and predictive control of a simulated robot ARM. Int. J. Neural Syst. 23(03), 1350010 (2013)CrossRefGoogle Scholar
  19. 19.
    Su, F., Wang, J., Deng, B., Wei, X.-L., Chen, Y.-Y., Liu, C., Li, H.-Y.: Adaptive control of parkinson039;s state based on a nonlinear computational model with unknown parameters. Int. J. Neural Syst. 25(01), 1450030 (2015)CrossRefGoogle Scholar
  20. 20.
    Yamazaki, T., Igarashi, J.: Realtime cerebellum: a large-scale spiking network model of the cerebellum that runs in realtime using a graphics processing unit. Neural Networks 47, 103–111 (2013)CrossRefGoogle Scholar
  21. 21.
    Casellato, C., Antonietti, A., Garrido, J.A., Carrillo, R.R., Luque, N.R., Ros, E., Pedrocchi, A., D’Angelo, E.: Adaptive robotic control driven by a versatile spiking cerebellar network. PLOS ONE 9(11), 1–17 (2014)CrossRefGoogle Scholar
  22. 22.
    Richter, C., Jentzsch, S., Hostettler, R., Garrido, J.A., Ros, E., Knoll, A., Rohrbein, F., van der Smagt, P., Conradt, J.: Musculoskeletal robots: scalability in neural control. IEEE Robot. Autom. Mag. 23(4), 128–137 (2016)CrossRefGoogle Scholar
  23. 23.
    Pacheco, M., Fogh, R., Lund, H.H., Christensen, D.J.: Fable: A modular robot for students, makers and researchers. In: Proceedings of the IROS workshop on Modular and Swarm Systems: from Nature to Robotics (2014)Google Scholar
  24. 24.
    Schweighofer, N., Doya, K., Lay, F.: Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control. Neuroscience 103(1), 35–50 (2001)CrossRefGoogle Scholar
  25. 25.
    Sjöström, J., Gerstner, W.: Spike-timing dependent plasticity. Spike-timing dependent plasticity, p. 35 (2010)Google Scholar
  26. 26.
    Davison, A., Brüderle, D., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L., Yger, P.: PYNN: a common interface for neuronal network simulators (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ismael Baira Ojeda
    • 1
    Email author
  • Silvia Tolu
    • 1
  • Henrik H. Lund
    • 1
  1. 1.Technical University of DenmarkLyngbyDenmark

Personalised recommendations