Advertisement

Tunable Normal and Shear Force Discrimination by a Plant-Inspired Tactile Sensor for Soft Robotics

  • Afroditi Astreinidi BlandinEmail author
  • Massimo Totaro
  • Irene Bernardeschi
  • Lucia BeccaiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)

Abstract

In plants, particular biomechanical protruding structures, tactile bleps, are thought to be specialized tactile sensory organs and sensitive to shear force. In this work, we present a 2D finite element analysis of a simplified plant-inspired capacitive tactile sensor. These preliminary results show that the variation of geometrical and material parameters permits to tune the sensitivity to normal and shear force and, with particular configurations, to discriminate between the two forces with a simple electrical layout and no signal processing.

Keywords

Bio-inspired tactile sensor Tactile blep Shear force discrimination Soft robotics 

References

  1. 1.
    Sane, S.P., McHenry, M.J.: The biomechanics of sensory organs. Integr. Comp. Biol. 49, i8–i23 (2009)CrossRefGoogle Scholar
  2. 2.
    Monshausen, G.B., Haswell, E.S.: A force of nature: molecular mechanisms of mechanoperception in plants. J. Exp. Bot. 64, 4663–4680 (2013)CrossRefGoogle Scholar
  3. 3.
    Engelberth, J., Wanner, G., Groth, B., Weiler, E.: Functional anatomy of the mechanoreceptor cells in tendrils of Bryonia dioica Jacq. Planta 196, 539–550 (1995)CrossRefGoogle Scholar
  4. 4.
    Sareh, S., Jiang, A., Faragasso, A., Noh, Y., Nanayakkara, T., Dasgupta, P., Seneviratne, L.D., Wurdemann, H.A., Althoefer, K.: Bio-inspired tactile sensor sleeve for surgical soft manipulators. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1454–1459. IEEE (2014)Google Scholar
  5. 5.
    Taya, M., Wang, J., Xu, C., Kuga, Y.: Tactile sensors (2010). http://www.google.com/patents/US7823467
  6. 6.
    Viry, L., Levi, A., Totaro, M., Mondini, A., Mattoli, V., Mazzolai, B., Beccai, L.: Flexible three-axial force sensor for soft and highly sensitive artificial touch. Adv. Mater. 26, 2659–2664 (2014)CrossRefGoogle Scholar
  7. 7.
    Park, J., Lee, Y., Hong, J., Lee, Y., Ha, M., Jung, Y., Lim, H., Kim, S.Y., Ko, H.: Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano 8, 12020–12029 (2014)CrossRefGoogle Scholar
  8. 8.
    Yu, P., Liu, W., Gu, C., Cheng, X., Fu, X.: Flexible piezoelectric tactile sensor array for dynamic three-axis force measurement. Sensors 16, 819 (2016)CrossRefGoogle Scholar
  9. 9.
    Case, J.C., White, E.L., Kramer, R.K.: Soft material characterization for robotic applications. Soft Robot. 2, 80–87 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Center for Micro-BioRoboticsIstituto Italiano di TecnologiaPontederaItaly
  2. 2.The BioRobotics InstituteScuola Superiore Sant’AnnaPontederaItaly

Personalised recommendations