Skip to main content

Non-ordinary Consciousness for Artificial Intelligence

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10384))

Abstract

Humans are active agents in the design of artificial intelligence (AI), and our input into its development is critical. A case is made for recognizing the importance of including non-ordinary functional capacities of human consciousness in the development of synthetic life, in order for the latter to capture a wider range in the spectrum of neurobiological capabilities. These capacities can be revealed by studying self-cultivation practices designed by humans since prehistoric times for developing non-ordinary functionalities of consciousness. A neurophenomenological praxis is proposed as a model for self-cultivation by an agent in an entropic world. It is proposed that this approach will promote a more complete self-understanding in humans and enable a more thoroughly mutually-beneficial relationship between in life in vivo and in silico.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McGinn, C.: Prehension: The Hand and the Emergence of Humanity. MIT Press, Massachusetts (2015)

    Google Scholar 

  2. Bostrom, N.: How long before superintelligence? Int. J. Future Stud. 2 (1998)

    Google Scholar 

  3. Bostrom, N.: Superintelligence: Paths, Dangers, Strategies. Oxford University Press, Oxford (2014)

    Google Scholar 

  4. Tani, J.: Exploring Robotic Minds: Actions, Symbols, and Consciousness as Self-Organizing Dynamic Phenomena. Oxford University Press, Oxford (2016)

    Book  Google Scholar 

  5. Hawkins, J., Blakeslee, S.: On Intelligence. Henry Holt and Company, New York (2007)

    Google Scholar 

  6. Bowler, P.J.: Evolution: The History of an Idea. University of California Press, Berkeley (2003)

    Google Scholar 

  7. Carhart-Harris, R.L., Leech, R., Hellyer, P.J., et al.: The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs (2014)

    Google Scholar 

  8. Carhart-Harris, R.L., Erritzoe, D., Williams, T., et al.: Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc. Natl. Acad. Sci. 109, 2138–2143 (2012)

    Article  Google Scholar 

  9. Vollenweider, F.X., Kometer, M.: The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat. Rev. Neurosci. 11, 642–651 (2010)

    Article  Google Scholar 

  10. Grof, S.: LSD Psychotherapy. Multidisciplinary Association for Psychedelic Studies (M A P S), Santa Cruz (2001)

    Google Scholar 

  11. Tang, Y.-Y., Holzel, B.K., Posner, M.I.: The neuroscience of mindfulness meditation. Nat. Rev. Neurosci. 16, 213–225 (2015). doi:10.1038/nrn3916

    Article  Google Scholar 

  12. Zeidan, F., Martucci, K.T., Kraft, R.A., Gordon, N.S., McHaffie, J.G., Coghill, R.C.: Brain mechanisms supporting the modulation of pain by mindfulness meditation. J. Neurosci. 31, 5540–5548 (2011). doi:10.1523/JNEUROSCI.5791-10.2011

    Article  Google Scholar 

  13. Allen, M., Dietz, M., Blair, K.S., et al.: Cognitive-affective neural plasticity following active-controlled mindfulness intervention. J. Neurosci. 32, 15601–15610 (2012)

    Article  Google Scholar 

  14. Maturana, H.R., Varela, F.J.: Autopoiesis and Cognition: The Realization of the Living. Springer, Netherlands (1991)

    Google Scholar 

  15. Varela, F.J., Rosch, E., Thompson, E.: The Embodied Mind: Cognitive Science and Human Experience. MIT Press, Massachusetts (1992)

    Google Scholar 

  16. O’Regan, J.K., Noë, A.: A sensorimotor account of vision and visual consciousness. Behav. Brain Sci. 24, 939–973 (2001)

    Article  Google Scholar 

  17. Verschure, P.F., Voegtlin, T., Douglas, R.J.: Environmentally mediated synergy between perception and behaviour in mobile robots. Nature 425, 620 (2003). doi:10.1038/nature02024

    Article  Google Scholar 

  18. Verschure, P.F.M.J.: Synthetic consciousness: the distributed adaptive control perspective. Philos. Trans. R. Soc. B Biol. Sci. (2016). doi:10.1098/rstb.2015.0448

    Google Scholar 

  19. Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010). doi:10.1038/nrn2787

    Article  Google Scholar 

  20. Clark, A.: Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36, 181–204 (2013)

    Article  Google Scholar 

  21. Schjoedt, U., Andersen, M.: How does religious experience work in predictive minds? Relig. Brain Behav. 1–4 (2017). doi:10.1080/2153599X.2016.1249913

  22. Tononi, G.: The integrated information theory of consciousness: an updated account. Arch. Ital. Biol. 150, 56–90 (2011)

    Google Scholar 

  23. Tononi, G.: Consciousness as integrated information: a provisional manifesto. Biol. Bull. (2016)

    Google Scholar 

  24. Hohwy, J.: Attention and conscious perception in the hypothesis testing brain. Front. Psychol. 3, 96 (2012). doi:10.3389/fpsyg.2012.00096

    Article  Google Scholar 

  25. Jeannerod, M.: Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage 14, S103–S109 (2001). doi:10.1006/nimg.2001.0832

    Article  Google Scholar 

  26. Hölzel, B.K., Lazar, S.W., Gard, T., et al.: How does mindfulness meditation work? Proposing mechanisms of action from a conceptual and neural perspective. Perspect. Psychol. Sci. 6, 537–559 (2011). doi:10.1177/1745691611419671

    Article  Google Scholar 

  27. Delevoye-Turrell, Y., Bobineau, C.: Motor consciousness during intention-based and stimulus-based actions: modulating attention resources through mindfulness meditation. Front. Psychol. 3, 290 (2012). doi:10.3389/fpsyg.2012.00290

    Article  Google Scholar 

  28. Pearson, J., Naselaris, T., Holmes, E.A., Kosslyn, S.M.: Mental imagery: functional mechanisms and clinical applications. Trends Cogn. Sci. 19, 590–602 (2015). doi:10.1016/j.tics.2015.08.003

    Article  Google Scholar 

  29. Spiers, H.J., Cothi, W., Bendor, D.: Manipulating hippocampus-dependent memories: to enhance, delete or incept? In: Hannula, D.E., Duff, M.C. (eds.) The Hippocampus from Cells to Systems: Structure, Connectivity, and Functional Contributions to Memory and Flexible Cognition, pp. 123–137. Springer, Cham (2017). doi:10.1007/978-3-319-50406-3_5

    Chapter  Google Scholar 

  30. Kumaran, D., Hassabis, D., McClelland, J.L.: What learning systems do intelligent agents need? Complementary learning systems theory updated. Trends Cogn. Sci. 20, 512–534 (2016). doi:10.1016/j.tics.2016.05.004

    Article  Google Scholar 

  31. Ramirez, S., Liu, X., MacDonald, C.J., et al.: Activating positive memory engrams suppresses depression-like behaviour. Nature 522, 335–339 (2015)

    Article  Google Scholar 

  32. Nabavi, S., Fox, R., Proulx, C.D., et al.: Engineering a memory with LTD and LTP. Nature 511, 348–352 (2014)

    Article  Google Scholar 

  33. Redondo, R.L., Kim, J., Arons, A.L., et al.: Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 513, 426–430 (2014)

    Article  Google Scholar 

  34. Chong, T.T.-J., Apps, M., Giehl, K., et al.: Neurocomputational mechanisms underlying subjective valuation of effort costs. PLoS Biol. 15, e1002598 (2017). doi:10.1371/journal.pbio.1002598

    Article  Google Scholar 

  35. Ide, J.S., Shenoy, P., Yu, A.J., Li, C.R.: Bayesian prediction and evaluation in the anterior cingulate cortex. J. Neurosci. 33, 2039 (2013). doi:10.1523/JNEUROSCI.2201-12.2013

    Article  Google Scholar 

  36. Schmidt, L., Lebreton, M., Cléry-Melin, M.-L., et al.: Neural mechanisms underlying motivation of mental versus physical effort. PLoS Biol. 10, e1001266 (2012). doi:10.1371/journal.pbio.1001266

    Article  Google Scholar 

  37. Domenech, P., Redouté, J., Koechlin, E., Dreher, J.-C.: The neuro-computational architecture of value-based selection in the human brain. Cereb. Cortex (2017)

    Google Scholar 

  38. Klyubin, A.S., Polani, D., Nehaniv, C.L.: Empowerment: a universal agent-centric measure of control. In: 2005 IEEE Congress on Evolution Computation, vol. 1, pp. 128–135 (2005)

    Google Scholar 

  39. Leon, P.S., Knock, S.A., Woodman, M.M., et al.: The Virtual brain: a simulator of primate brain network dynamics. Inf. Based Methods Neuroimaging Anal. Struct. Funct. Dyn. 8 (2015)

    Google Scholar 

  40. Petitmengin, C.: Describing one’s subjective experience in the second person: an interview method for the science of consciousness. Phenomenol Cogn. Sci. 5, 229–269 (2006). doi:10.1007/s11097-006-9022-2

    Article  Google Scholar 

  41. Petitmengin, C., Lachaux, J.-P.: Microcognitive science: bridging experiential and neuronal microdynamics. Front. Hum. Neurosci. 7, 617 (2013). doi:10.3389/fnhum.2013.00617

    Article  Google Scholar 

  42. Petitmengin, C., Baulac, M., Navarro, V.: Seizure anticipation: Are neurophenomenological approaches able to detect preictal symptoms? Epilepsy Behav. 9, 298–306 (2006). doi:10.1016/j.yebeh.2006.05.013

    Article  Google Scholar 

  43. Mason, C.: Engineering kindness: building a machine with compassionate intelligence. Int. J. Synth. Emot. IJSE 6, 1–23 (2015)

    Article  Google Scholar 

  44. Prassler, E., Lawitzky, G., Stopp, A., et al.: Advances in Human-Robot Interaction. Springer, Heidelberg (2004)

    Google Scholar 

  45. Coleman, D.: Human-Robot Interactions: Principles, Technologies and Challenges. Nova Science Publishers, Incorporated, New York (2015)

    Google Scholar 

  46. Kanda, T., Ishiguro, H.: Human-Robot Interaction in Social Robotics. Taylor & Francis, New York (2012)

    Book  Google Scholar 

  47. Jentsch, F., Barnes, M., Harris, P.D., et al.: Human-Robot Interactions in Future Military Operations. Ashgate Publishing Limited, Aldershot (2012)

    Google Scholar 

  48. Browning, F.: The Fate of Gender: Nature, Nurture, and the Human Future. Bloomsbury Publishing, London (2016)

    Google Scholar 

  49. Freud, S., Strachey, J.: An Outline of Psycho-analysis. W. W. Norton, New York (1989)

    Google Scholar 

  50. Jung, C.G.: The Psychology of the Transference. Taylor & Francis, New York (2013)

    Google Scholar 

  51. Gallese, V., Goldman, A.: Mirror neurons and the simulation theory of mind-reading. Trends Cogn. Sci. 2, 493–501 (1998)

    Article  Google Scholar 

  52. Heyes, C.: Where do mirror neurons come from? Neurosci. Biobehav. Rev. 34, 575–583 (2010)

    Article  Google Scholar 

  53. Iacoboni, M.: Imitation, empathy, and mirror neurons. Annu. Rev. Psychol. 60, 653–670 (2009)

    Article  Google Scholar 

  54. Uddin, L.Q., Iacoboni, M., Lange, C., Keenan, J.P.: The self and social cognition: the role of cortical midline structures and mirror neurons. Trends Cogn. Sci. 11, 153–157 (2007)

    Article  Google Scholar 

  55. Matsuda, G., Hiraki, K., Ishiguro, H.: EEG-based mu rhythm suppression to measure the effects of appearance and motion on perceived human likeness of a robot. J. Hum. Rob. Interact. 5, 68–81 (2015)

    Article  Google Scholar 

  56. Pineda, J.A.: The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”. Brain Res. Rev. 50, 57–68 (2005). doi:10.1016/j.brainresrev.2005.04.005

    Article  Google Scholar 

  57. Ulloa, E.R., Pineda, J.A.: Recognition of point-light biological motion: Mu rhythms and mirror neuron activity. Behav. Brain Res. 183, 188–194 (2007). doi:10.1016/j.bbr.2007.06.007

    Article  Google Scholar 

  58. Europe’s robots to become “electronic persons” under draft plan. In: Reuters (2017). Accessed 9 Mar 2017

    Google Scholar 

  59. Montes, J.: The Mars Ice House (2015)

    Google Scholar 

  60. Richter, C.G., Babo-Rebelo, M., Schwartz, D., Tallon-Baudry, C.: Phase-amplitude coupling at the organism level: the amplitude of spontaneous alpha rhythm fluctuations varies with the phase of the infra-slow gastric basal rhythm. NeuroImage 146, 951–958 (2017). doi:10.1016/j.neuroimage.2016.08.043

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Axel Montes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Montes, G.A. (2017). Non-ordinary Consciousness for Artificial Intelligence. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63537-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63536-1

  • Online ISBN: 978-3-319-63537-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics