Advertisement

An Integrated Compliant Fabric Skin Softens, Lightens, and Simplifies a Mesh Robot

  • Anna MehringerEmail author
  • Akhil Kandhari
  • Hillel Chiel
  • Roger Quinn
  • Kathryn Daltorio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)

Abstract

Earthworms are particularly skilled at navigating through confined spaces. Therefore, creating a soft robot that mimics their peristaltic locomotion could provide unique advantages for pipe inspection, search and rescue, exploration, and medical applications. Here we present the design of a new robot, FabricWorm, that like its predecessor, CMMWorm, has six segments that are actuated with circumferential cables sequentially to mimic the peristaltic motion in an earthworm. However, compared to its predecessor, FabricWorm is 41% softer, is 23% lighter, and has 64% fewer rigid structural components due to the integration of the mesh within a fabric skin. These improvements, and the benefit of a continuous fabric skin, can be important advantages for worm-like robots.

Keywords

Textiles in soft robotics Earthworm –like peristaltic locomotion Biological inspiration 

Notes

Acknowledgments

This work was supported by NSF research Grant No. IIS-1065489.

References

  1. 1.
    Gray, J., Lissmann, H.W.: Studies in animal locomotion VII. Locomotory reflexes in the earthworm. J. Exp. Biol. 15, 506–517 (1938)Google Scholar
  2. 2.
    Tanaka, T., Harigaya, K., Nakamura, T.: Development of a peristaltic crawling robot for long-distance inspection of sewer pipes. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Besançon, France, pp. 1552–1557 (2014)Google Scholar
  3. 3.
    Wang, K., Yan, G.: Micro robot prototype for colonoscopy and in vitro experiments. J. Med. Eng. Technol. 31, 24–28 (2007)CrossRefGoogle Scholar
  4. 4.
    Dario, P., Ciarletta, P., Menciassi, A., Kim, B.: Modeling and experimental validation of the locomotion of endoscopic robots in the colon. Int. J. Robot. Res. 23, 549–556 (2004)CrossRefGoogle Scholar
  5. 5.
    Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31, 287–294 (2013)CrossRefGoogle Scholar
  6. 6.
    Omori, H., Nakamura, T., Yada, T.: An underground explorer robot based on peristaltic crawling of earthworms. Ind. Robot. Int. J. 36, 358–364 (2009)CrossRefGoogle Scholar
  7. 7.
    Vaidyanathan, R., Chiel, H.J., Quinn, R.D.: A hydrostatic robot for marine applications. Robot. Auton. Syst. 30, 103–113 (2000)CrossRefGoogle Scholar
  8. 8.
    Seok, S., Onal, C.D., Cho, K.-J., Wood, R.J., Rus, D., Kim, S.: Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Trans. Mechatron. 18, 1485–1497 (2013)CrossRefGoogle Scholar
  9. 9.
    Mazzolai, B., Margheri, L., Cianchetti, M., Dario, P., Laschi, C.: Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspiration Biomimetrics 7(2), 025005 (2012)CrossRefGoogle Scholar
  10. 10.
    Umedachi, T., Trimmer, B.A.: Design of a 3D-printed soft robot with posture and steering control. In: Proceedings of IEEE International Conference on Robotics and Automation, Hong Kong, pp. 2874–2879 (2014)Google Scholar
  11. 11.
    Mangan, E.V., Kingsley, D.A., Quinn, R.D., Chiel, H.J.: Development of a peristaltic endoscope. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 347–352 (2002)Google Scholar
  12. 12.
    Onal, C.D., Chen, X., Whitesides, G.M., Rus, D.: Soft mobile robots with on-board chemical pressure generation. In: International Symposium on Robotics Research, pp. 1–16 (2011)Google Scholar
  13. 13.
    Tolley, M., Shepherd, R., Mosadegh, B., Galloway, K., Wehner, M., Karpelson, M., et al.: A Resilient. Untethered Soft Robot. Soft Robot. 1(3), 213–223 (2014)CrossRefGoogle Scholar
  14. 14.
    Katzschman, R.K., Marchese, A.D., Rus, D.: Hydraulic autonomous soft robotic fish for 3D swimming. In: Proceedings of the International Symposium Experimental Robotics, pp. 1–15 (2014)Google Scholar
  15. 15.
    Jung, K., Koo, J.C., Nam, J., Lee, Y.K., Choi, H.R.: Artificial annelid robot driven by soft actuators. Bioinspiration Biomimetics 2(2), S42-9 (2007)CrossRefGoogle Scholar
  16. 16.
    Carpi, F., Menon, C., De Rossi, D.: Electroactive elastomeric actuator for all-polymer linear peristaltic pumps. IEEE/ASME Trans. Mechatron. 15(3), 460–470 (2010)CrossRefGoogle Scholar
  17. 17.
    Boxerbaum, A.S., Chiel, H.J., Quinn, R.D.: A new theory and methods for creating peristaltic motion in a robotic platform. In: Proceedings of IEEE International Conference on Robotics and Automation, Anchorage, AK, pp. 1221–1227 (2010)Google Scholar
  18. 18.
    Renda, F., Cianchetti, M., Giorelli, M., Arienti, A., Laschi, C.: A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm. Bioinspiration Biomimetrics 7, 025006 (2012)CrossRefGoogle Scholar
  19. 19.
    Jones, B.A., Walker, I.D.: Kinematics for multisection continuum robots. IEEE Trans. Robot. 22(1), 43–55 (2006)CrossRefGoogle Scholar
  20. 20.
    Horchler, A., Kandhari, A., Daltorio, K., Moses, K., Ryan, J., Stultz, K., et al.: Peristaltic locomotion of a modular mesh-based worm robot: precision, compliance, and friction. Soft Robot. 2, 135–145 (2015)CrossRefGoogle Scholar
  21. 21.
    Horchler, A.D., Kandhari, A., Daltorio, K.A., et al.: Worm-like robotic locomotion with a compliant modular mesh. In: Proceedings of International Conference on biomimetic and biohybrid systems, vol. 9222, Barcelona, Spain, pp. 26–37 (2015)Google Scholar
  22. 22.
    Huang, Y., Kandhari, A., Chiel, H.J., Quinn, R.D., Daltorio, K.A.: Mathematical Modeling to Improve Control of Mesh Body for Peristaltic Locomotion, Living Machines 2017 (submitted)Google Scholar
  23. 23.
    Lee, D., Kim, J., Park, J., Kim, S., Cho, K.: Fabrication of origami wheel using pattern embedded fabric and its application to a deformable mobile robot. IEEE (2014)Google Scholar
  24. 24.
    Case, J.C., Yuen, M.C., Mohammed, M., Kramer, R.K.: Sensor skins: an overview. In: Rogers, J., Gharrari, R., Kim, D.-H. (eds.) In Stretchable Bioelectronics for Medical Devices and Systems, pp. 13–191. Springer, New York (2016)Google Scholar
  25. 25.
    Quinlivan, B.T., Lee, S., Malcolm, P., Rossi, D.M., Grimmer, M., Siviy, C., Karavas, N., Wagner, D., Asbeck, A., Galiana, I., Walsh, C.J.: Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit. Sci. Rob. 2(2), eaah4416 (2017)CrossRefGoogle Scholar
  26. 26.
    Gaddes, D., Jung, H., Pena-Francesch, A., Dion, G., Tadigadapa, S., Dressick, W., et al.: Self-healing textile: enzyme encapsulated layer-by-layer structural proteins. ACS Appl. Mater. Interfaces. 8(31), 20371–20378 (2016)CrossRefGoogle Scholar
  27. 27.
    Kim, K., Chun, J., Kim, J., Lee, K., Park, J., Kim, S., et al.: Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano 9(6), 6394–6400 (2015)CrossRefGoogle Scholar
  28. 28.
    Coyle, S., Wu, Y., Lau, K., De Rossi, D., Wallace, G., Diamond, D.: Smart nanotextiles: a review of materials and applications. MRS Bull. 32(5), 434–442 (2007)CrossRefGoogle Scholar
  29. 29.
    Connolly, F., Polygerinos, P., Walsh, C.J., Bertoldi, K.: Mechanical programming of soft actuators by varying fiber angle. Soft. Robot. 1, 26–32 (2015)CrossRefGoogle Scholar
  30. 30.
    Mangan, E.V., Kingsley, D.A., Quinn, R.D., Sutton, G.P., Mansour, J.M., Chiel, H.J.: A biologically inspired gripping device. Ind. Robot. Int. J. 32, 49–54 (2005)CrossRefGoogle Scholar
  31. 31.
    Mehringer, A., FabricWorm, A.: Biologically-Inspired Robot That Demonstrates Structural Advantages of a Soft Exterior for Peristaltic Locomotion, OhioLink (2017, submitted)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Anna Mehringer
    • 1
    Email author
  • Akhil Kandhari
    • 1
  • Hillel Chiel
    • 2
  • Roger Quinn
    • 1
  • Kathryn Daltorio
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringCase Western Reserve UniversityClevelandUSA
  2. 2.Departments of Biology, Neurosciences and Biomedical EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations