Skip to main content

An Adaptive Modular Recurrent Cerebellum-Inspired Controller

  • Conference paper
  • First Online:
  • 3903 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10384))

Abstract

Animals and robots face the common challenge of interacting with an unstructured environment. While animals excel and thrive in such environments, modern robotics struggles to effectively execute simple tasks. To help improve performance in the face of frequent changes in the mapping between action and outcome (change in context) we propose the Modular-RDC controller, a bio-inspired controller based on the Recurrent Decorrelation Control (RDC) architecture. The proposed controller consists of multiple modules, each containing a forward and inverse model pair. The combined output of all inverse models is used to control the plant, with the contribution of each inverse model determined by a responsibility factor. The controller is able to correctly identify the best module for the current context, enabling a significant reduction of 70.9% in control error for a context-switching plant. It is also shown that the controller results in a degree of generalization in control.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    During the training phase, the responsibility factors are manually set and not determined by the switching mechanism.

References

  1. Kawato, M.: Internal models for motor control and trajectory planning. Curr. Opin. Neurobiol. 9(6), 718–727 (1999)

    Google Scholar 

  2. Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Networks 11(7), 1317–1329 (1998). doi:10.1016/S0893-6080(98)00066-5

  3. Wolpert, D.M., Chris Miall, R., Kawato, M.: Internal models in the cerebellum. Trends Cogn. Sci. 2(9), 338–347 (1998)

    Google Scholar 

  4. Imamizu, H., Kuroda, T., Miyauchi, S., Yoshioka, T., Kawato, M.: Modular organization of internal models of tools in the human cerebellum. Proc. Nat. Acad. Sci. 100(9), 5461–5466 (2003)

    Google Scholar 

  5. Ito, M.: Historical review of the significance of the cerebellum and the role of purkinje cells in motor learning. Ann. N. Y. Acad. Sci. 978(1), 273–288 (2002)

    Article  Google Scholar 

  6. Fujita, M.: Adaptive filter model of the cerebellum. Biol. Cybern. 45(3), 195–206 (1982)

    Google Scholar 

  7. Porrill, J., Dean, P., Stone, J.V.: Recurrent cerebellar architecture solves the motor-error problem. Proc. Roy. Soc. London-B, 271(1541), 789–796 (2004)

    Google Scholar 

  8. Lenz, A., Balakrishnan, T., Pipe, A.G., Melhuish, C.: An adaptive gaze stabilization controller inspired by the vestibulo-ocular reflex. Bioinspiration Biomimetics 3(3), 035001 (2008)

    Google Scholar 

  9. Wilson, E.D., Assaf, T., Pearson, M.J., Rossiter, J.M., Anderson, S.R., Porrill, J.: Bioinspired adaptive control for artificial muscles. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 311–322. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39802-5_27

    Chapter  Google Scholar 

  10. Lenz, A., Anderson, S.R., Pipe, A.G., Melhuish, C., Dean, P., Porrill, J.: Cerebellar-inspired adaptive control of a robot eye actuated by pneumatic artificial muscles. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 39(6), 1420–1433 (2009)

    Google Scholar 

  11. Narendra, K.S., Balakrishnan, J.: Improving transient response of adaptive control systems using multiple models and switching. IEEE Trans. Autom. Control 39(9), 1861–1866 (1994)

    Google Scholar 

  12. Haruno, M., Wolpert, D.M., Kawato, M.: Mosaic model for sensorimotor learning and control. Neural Comput. 13(10), 2201–2220 (2001)

    Google Scholar 

  13. Davidson, P.R., Wolpert, D.M.: Internal models underlying grasp can be additively combined. Exp. Brain Res. 155(3), 334–340 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyan Maheri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Maheri, K., Lenz, A., Pearson, M.J. (2017). An Adaptive Modular Recurrent Cerebellum-Inspired Controller. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63537-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63536-1

  • Online ISBN: 978-3-319-63537-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics