Animal and Robotic Locomotion on Wet Granular Media

  • Hosain Bagheri
  • Vishwarath Taduru
  • Sachin Panchal
  • Shawn White
  • Hamidreza MarviEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)


Most of the terrestrial environments are covered with some type of flowing ground; however, inadequate understanding of moving bodies interacting with complex granular substrates has hindered the development of terrestrial/all-terrain robots. Although there has been recent performance of experimental and computational studies of dry granular media, wet granular media remain largely unexplored. In particular, this encompasses animal locomotion analysis, robotic system performance, and the physics of granular media at different saturation levels. Given that the presence of liquid in granular media alters its properties significantly, it is advantageous to evaluate the locomotion of animals inhabiting semi-aquatic and tropical environments to learn more about effective locomotion strategies on such terrains. Lizards are versatile and highly agile animals. Therefore, this study evaluated the brown basilisk, which is a lizard species from such habitats that are known for their performance on wet granular media. An extensive locomotion study was performed on this species. The animal experiments showed that on higher saturation levels, velocity of the animal was increased due to an increase in the stride length. A basilisk-inspired robot was then developed to further study the locomotion on wet granular media and it was observed that the robot can also achieve higher velocities at increased saturation levels. This work can pave the way for developing robotic systems which can explore complex environments for scientific discovery, planetary exploration, or search-and-rescue missions.


Wet granular media Bipedal/quadrupedal locomotion Basilisk lizard Bio-inspired robot 



The authors would like to thank ASU Institutional Animal Care and Use Committee (IACUC) for animal husbandry (IACUC Protocol #: 16-1504R), Professor Dale DeNardo for greatly valuable suggestions on the choice of animal and animal experiments, Professor Heather Emady and Spandana Vajrala for fruitful discussions on studying wet granular media, Carolyn Harvey for her contributions to the setup development, Daniel Lee, Isaac Charcos, and John Millard for helping with animal data collection/analysis, and Arizona State University for funding.


  1. 1.
    Murphy, R.R., Tadokoro, S., Kleiner, A.: Disaster Robotics. Springer Handbook of Robotics. Springer, Cham (2016)Google Scholar
  2. 2.
    Aguilar, J., Zhang, T., Qian, F., Kingsbury, M., McInroe, B., Mazouchova, N., Li, C., Maladen, R., Gong, C., Travers, M., et al.: A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems. Rep. Prog. Phys. 79(11), 110001 (2016)CrossRefGoogle Scholar
  3. 3.
    Mazouchova, N., Gravish, N., Savu, A., Goldman, D.I.: Utilization of granular solidification during terrestrial locomotion of hatchling sea turtles. Biol. Lett. 6(3), 398–401 (2010)CrossRefGoogle Scholar
  4. 4.
    Sharpe, S.S., Kuckuk, R., Goldman, D.I.: Controlled preparation of wet granular media reveals limits to lizard burial ability. Phys. Biol. 12(4), 046009 (2015)CrossRefGoogle Scholar
  5. 5.
    Richefeu, V., El Youssoufi, M.S., Azéma, E., Radjai, F.: Force transmission in dry and wet granular media. Powder Technol. 190(1), 258–263 (2009)CrossRefGoogle Scholar
  6. 6.
    Li, C., Zhang, T., Goldman, D.I.: A terradynamics of legged locomotion on granular media. Science 339(6126), 1408–1412 (2013)CrossRefGoogle Scholar
  7. 7.
    Reina, G., Ojeda, L., Milella, A., Borenstein, J.: Wheel slippage and sinkage detection for planetary rovers. IEEE/ASME Trans. Mech. 11(2), 185–195 (2006)CrossRefGoogle Scholar
  8. 8.
    Ghotbi, B., González, F., Kövecses, J., Angeles, J.: Mobility evaluation of wheeled robots on soft terrain: effect of internal force distribution. Mech. Mach. Theor. 100, 259–282 (2016)CrossRefGoogle Scholar
  9. 9.
    Zhou, F., Arvidson, R.E., Bennett, K., Trease, B., Lindemann, R., Bellutta, P., Iagnemma, K., Senatore, C.: Simulations of Mars rover traverses. J. Field Robot. 31(1), 141–160 (2014)CrossRefGoogle Scholar
  10. 10.
    Heverly, M., Matthews, J., Lin, J., Fuller, D., Maimone, M., Biesiadecki, J., Leichty, J.: Traverse performance characterization for the mars science laboratory rover. J. Field Robot. 30(6), 835–846 (2013)CrossRefGoogle Scholar
  11. 11.
    Li, C.: Biological, robotic, and physics studies to discover principles of legged locomotion on granular media. Georgia Institute of Technology (2011)Google Scholar
  12. 12.
    Maladen, R.D., Ding, Y., Li, C., Goldman, D.I.: Undulatory swimming in sand: subsurface locomotion of the sandfish lizard. Science 325(5938), 314–318 (2009)CrossRefGoogle Scholar
  13. 13.
    Marvi, H., Gong, C., Gravish, N., Astley, H., Travers, M., Hatton, R.L., Mendelson, J.R., Choset, H., Hu, D.L., Goldman, D.I.: Sidewinding with minimal slip: snake and robot ascent of sandy slopes. Science 346(6206), 224–229 (2014)CrossRefGoogle Scholar
  14. 14.
    Goldman, D.I., Umbanhowar, P.: Scaling and dynamics of sphere and disk impact into granular media. Phys. Rev. E 77(2), 021308 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gravish, N., Franklin, S.V., Hu, D.L., Goldman, D.I.: Entangled granular media. Phys. Rev. Lett. 108(20), 208001 (2012)CrossRefGoogle Scholar
  16. 16.
    Hubicki, C.M., et al.: Tractable terrain-aware motion planning on granular media: an impulsive jumping study. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2016)Google Scholar
  17. 17.
    Brzinski, T., Mayor, P., Durian, D.: Depth-dependent resistance of granular media to vertical penetration. Phys. Rev. Lett. 111(16), 168002 (2013)CrossRefGoogle Scholar
  18. 18.
    Katsuragi, H., Durian, D.J.: Unified force law for granular impact cratering. Nat. Phys. 3(6), 420–423 (2007)CrossRefGoogle Scholar
  19. 19.
    Li, C., Umbanhowar, P.B., Komsuoglu, H., Koditschek, D.E., Goldman, D.I.: Sensitive dependence of the motion of a legged robot on granular media. Proc. Natl. Acad. Sci. 106(9), 3029–3034 (2009)CrossRefGoogle Scholar
  20. 20.
    Li, C., Umbanhowar, P.B., Komsuoglu, H., Goldman, D.I.: The effect of limb kinematics on the speed of a legged robot on granular media. Exp. Mech. 50(9), 1383–1393 (2010)CrossRefGoogle Scholar
  21. 21.
    Maladen, R.D., Ding, Y., Umbanhowar, P.B., Kamor, A., Goldman, D.I.: Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming. J. Roy. Soc. Interface 8(62), 1332–1345 (2011)CrossRefGoogle Scholar
  22. 22.
    Mcinroe, B., Goldman, D.: Construction of a mudskipper-inspired robot to study crutching locomotion on flowable ground. Integr. Comp. Biol. 54, E316–E316 (2014)Google Scholar
  23. 23.
    Lejeune, T.M., Willems, P.A., Heglund, N.C.: Mechanics and energetics of human locomotion on sand. J. Exp. Biol. 201(13), 2071–2080 (1998)Google Scholar
  24. 24.
    Raibert, M., Blankespoor, K., Nelson, G., Playter, R.: BigDog, the rough-terrain quadruped robot. In: Proceedings of the 17th World Congress, pp. 10822–10825 (2008)Google Scholar
  25. 25.
    Asif, U., Iqbal, J.: On the improvement of multi-legged locomotion over difficult terrains using a balance stabilization method. Int. J. Adv. Robot. Syst. 9(1) (2012). doi: 10.5772/7789
  26. 26.
    Ren, X., Liang, X., Kong, Z., Xu, M., Xu, R., Zhang, S.: An experimental study on the locomotion performance of elliptic-curve leg in muddy terrain. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 518–523 (2013)Google Scholar
  27. 27.
    Xu, L., Liang, X., Xu, M., Liu, B., Zhang, S.: Interplay of theory and experiment in analysis of the advantage of the novel semi-elliptical leg moving on loose soil. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 26–31 (2013)Google Scholar
  28. 28.
    Klein, M., Boxerbaum, A.S., Quinn, R.D., Harkins, R., Vaidyanathan, R.: SeaDog: a rugged mobile robot for surf-zone applications. In: Proceedings of 4th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 1335–1340 (2012)Google Scholar
  29. 29.
    Mitarai, N., Nori, F.: Wet granular materials. Adv. Phys. 55(1–2), 1–45 (2006)CrossRefGoogle Scholar
  30. 30.
    Tegzes, P., Vicsek, T., Schiffer, P.: Avalanche dynamics in wet granular materials. Phys. Rev. Lett. 89(9), 094301 (2002)CrossRefGoogle Scholar
  31. 31.
    Albert, R., Albert, I., Hornbaker, D., Schiffer, P., Barabási, A.L.: Maximum angle of stability in wet and dry spherical granular media. Phys. Rev. E 56(6), R6271 (1997)CrossRefGoogle Scholar
  32. 32.
    Richefeu, V., El Youssoufi, M.S., Radjai, F.: Shear strength properties of wet granular materials. Phys. Rev. E 73(5), 051304 (2006)CrossRefGoogle Scholar
  33. 33.
    Cutkosky, M.R., Kim, S.: Design and fabrication of multi-material structures for bioinspired robots. Philos. Trans. Roy. Soc. Lond. A Math. Phys. Eng. Sci. 367(1894), 1799–1813 (2009)CrossRefGoogle Scholar
  34. 34.
    Bhushan, B.: Biomimetics: lessons from nature-an overview (2009)Google Scholar
  35. 35.
    Tesch, M., Lipkin, K., Brown, I., Hatton, R., Peck, A., Rembisz, J., Choset, H.: Parameterized and scripted gaits for modular snake robots. Adv. Robot. 23(9), 1131–1158 (2009)CrossRefGoogle Scholar
  36. 36.
    Ma, K.Y., Chirarattananon, P., Fuller, S.B., Wood, R.J.: Controlled flight of a biologically inspired, insect-scale robot. Science 340(6132), 603–607 (2013)CrossRefGoogle Scholar
  37. 37.
    Holmes, P., Full, R.J., Koditschek, D., Guckenheimer, J.: The dynamics of legged locomotion: models, analyses, and challenges. SIAM Rev. 48(2), 207–304 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Li, C., Hsieh, S.T., Goldman, D.I.: Multi-functional foot use during running in the zebra-tailed lizard (callisaurus draconoides). J. Exp. Biol. 215(18), 3293–3308 (2012)CrossRefGoogle Scholar
  39. 39.
    Irschick, D.J., Jayne, B.C.: Effects of incline on speed, acceleration, body posture and hindlimb kinematics in two species of lizard callisaurus draconoides and uma scoparia. J. Exp. Biol. 201(2), 273–287 (1998)Google Scholar
  40. 40.
    Glasheen, J., McMahon, T.: Size-dependence of water-running ability in basilisk lizards (basiliscus basiliscus). J. Exp. Biol. 199(12), 2611–2618 (1996)Google Scholar
  41. 41.
    Hsieh, S.T.: Three-dimensional hindlimb kinematics of water running in the plumed basilisk lizard (basiliscus plumifrons). J. Exp. Biol. 206(23), 4363–4377 (2003)CrossRefGoogle Scholar
  42. 42.
    Irschick, D.J., Jayne, B.C.: Comparative three-dimensional kinematics of the hindlimb for high-speed bipedal and quadrupedal locomotion of lizards. J. Exp. Biol. 202(9), 1047–1065 (1999)Google Scholar
  43. 43.
    Hsieh, S.T., Lauder, G.V.: Running on water: three-dimensional force generation by basilisk lizards. Proc. Natl. Acad. Sci. U.S.A. 101(48), 16784–16788 (2004)CrossRefGoogle Scholar
  44. 44.
    Bush, J.W., Hu, D.L.: Walking on water: biolocomotion at the interface. Annu. Rev. Fluid Mech. 38, 339–369 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Snyder, R.C.: Bipedal locomotion of the lizard basiliscus basiliscus. Copeia 1949(2), 129–137 (1949)CrossRefGoogle Scholar
  46. 46.
    Aerts, P., Van Damme, R., D’Août, K., Van Hooydonck, B.: Bipedalism in lizards: whole-body modelling reveals a possible spandrel. Philos. Trans. Roy. Soc. Lond. B Biol. Sci. 358(1437), 1525–1533 (2003)CrossRefGoogle Scholar
  47. 47.
    Park, H.S., Sitti, M.: Compliant footpad design analysis for a bio-inspired quadruped amphibious robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 645–651. IEEE (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hosain Bagheri
    • 1
  • Vishwarath Taduru
    • 1
  • Sachin Panchal
    • 1
  • Shawn White
    • 1
  • Hamidreza Marvi
    • 1
    Email author
  1. 1.Arizona State UniversityTempeUSA

Personalised recommendations