Advertisement

Neuronal Distance Estimation by a Fly-Robot Interface

  • Jiaqi V. HuangEmail author
  • Holger G. Krapp
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)

Abstract

The ability of an autonomous robot to avoid collisions depends on distance estimates. In this paper, we focus on open-loop responses of the identified directional-selective H1-cell in the fly brain, recorded in animals that are mounted on a 2-wheeled robot. During oscillatory forward movement along a wall clad with a pattern of vertical stripes on one side of the robot, the H1-cell periodically increases and decreases its spike rate, where the response amplitude depends on two parameters: (i) the turning radius of the robot, and (ii) the distance between the wall and the mean forward trajectory of the robot. For small turning radii, we found a monotonic relationship between the H1-cell’s spike rate and wall distance. Our results suggest that, given a known turning radius, the responses of the H1-cell could be used in a negative feedback-loop to control the average forward trajectory of an autonomous robot that avoids collisions with potential obstacles in its environment.

Keywords

Motion vision Brain machine interface Blowfly H1-cell Collision avoidance Distance estimation 

Notes

Acknowledgments

The authors would like to thank Naomi Ho for calibrating the robot firmware, Dr. Caroline Golden for improving the proofreading the manuscript. This work was partially supported by US AFOSR/EOARD grant FA8655-09-1-3083 to HGK.

References

  1. 1.
    Fenton, M.B.: Natural history and biosonar signals. In: Popper, A.N., Fay, R.R. (eds.) Hearing by Bats, pp. 37–86. Springer, New York (1995). doi: 10.1007/978-1-4612-2556-0_2 CrossRefGoogle Scholar
  2. 2.
    Au, W.W.L.: The Sonar of Dolphins. Springer, New York (1993). doi: 10.1007/978-1-4612-4356-4 CrossRefGoogle Scholar
  3. 3.
    Hartenstein, V., Reh, T.A.: Homologies between vertebrate and invertebrate eyes. In: Moses, D.K. (ed.) Drosophila Eye Development, pp. 219–255. Springer, Heidelberg (2002). doi: 10.1007/978-3-540-45398-7_14 CrossRefGoogle Scholar
  4. 4.
    Sarpeshkar, R.: Ultra Low Power Bioelectronics: Fundamentals, Biomedical Applications, and Bio-Inspired Systems. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  5. 5.
    Huang, J.V., Krapp, H.G.: Miniaturized electrophysiology platform for fly-robot interface to study multisensory integration. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 119–130. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39802-5_11 CrossRefGoogle Scholar
  6. 6.
    Huang, J.V., Krapp, H.G.: A predictive model for closed-loop collision avoidance in a fly-robotic interface. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds.) Living Machines 2014. LNCS, vol. 8608, pp. 130–141. Springer, Cham (2014). doi: 10.1007/978-3-319-09435-9_12 Google Scholar
  7. 7.
    Huang, J.V., Krapp, H.G.: Closed-loop control in an autonomous bio-hybrid robot system based on binocular neuronal input. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) Living Machines 2015. LNCS, vol. 9222, pp. 164–174. Springer, Cham (2015). doi: 10.1007/978-3-319-22979-9_17 CrossRefGoogle Scholar
  8. 8.
    Huang, J.V., Wang, Y., Krapp, H.G.: Wall following in a semi-closed-loop fly-robotic interface. In: Lepora, N.F.F., Mura, A., Mangan, M., Verschure, P.F.M.J., Desmulliez, M., Prescott, T.J. (eds.) Living Machines 2016. LNCS, vol. 9793, pp. 85–96. Springer, Cham (2016). doi: 10.1007/978-3-319-42417-0_9 CrossRefGoogle Scholar
  9. 9.
    Strausfeld, D.N.J.: The atlas: sections through the brain. In: Strausfeld, D.N.J. (ed.) Atlas of an Insect Brain, pp. 57–115. Springer, Heidelberg (1976). doi: 10.1007/978-3-642-66179-2_7 CrossRefGoogle Scholar
  10. 10.
    Hausen, K.: Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythrocephala. Z. Naturforsch. 31, 629–633 (1976)Google Scholar
  11. 11.
    Krapp, H.G., Hengstenberg, R., Egelhaaf, M.: Binocular contributions to optic flow processing in the fly visual system. J. Neurophysiol. 85, 724–734 (2001)Google Scholar
  12. 12.
    Jung, S.N., Borst, A., Haag, J.: Flight activity alters velocity tuning of fly motion-sensitive neurons. J. Neurosci. 31, 9231–9237 (2011)CrossRefGoogle Scholar
  13. 13.
    Longden, K.D., Krapp, H.G.: Octopaminergic modulation of temporal frequency coding in an identified optic flow-processing interneuron. Front. Syst. Neurosci. 4, 153 (2010)CrossRefGoogle Scholar
  14. 14.
    Maddess, T., Laughlin, S.B.: Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency. Proc. R. Soc. Lond. B Biol. Sci. 225, 251–275 (1985)CrossRefGoogle Scholar
  15. 15.
    Lewen, G.D., Bialek, W., de Ruyter van Steveninck, R.R.: Neural coding of naturalistic motion stimuli. Netw. Bristol Engl. 12, 317–329 (2001)CrossRefGoogle Scholar
  16. 16.
    Huston, S.J., Krapp, H.G.: Nonlinear integration of visual and haltere inputs in fly neck motor neurons. J. Neurosci. 29, 13097–13105 (2009)CrossRefGoogle Scholar
  17. 17.
    Parsons, M.M., Krapp, H.G., Laughlin, S.B.: A motion-sensitive neurone responds to signals from the two visual systems of the blowfly, the compound eyes and ocelli. J. Exp. Biol. 209, 4464–4474 (2006)CrossRefGoogle Scholar
  18. 18.
    Franceschini, N.: Pupil and pseudopupil in the compound eye of drosophila. In: Wehner, R. (ed.) Information Processing in the Visual Systems of Anthropods, pp. 75–82. Springer, Heidelberg (1972). doi: 10.1007/978-3-642-65477-0_10 CrossRefGoogle Scholar
  19. 19.
    Karmeier, K., Tabor, R., Egelhaaf, M., Krapp, H.G.: Early visual experience and the receptive-field organization of optic flow processing interneurons in the fly motion pathway. Vis. Neurosci. 18, 1–8 (2001)CrossRefGoogle Scholar
  20. 20.
    Borst, A., Egelhaaf, M., Haag, J.: Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons. J. Comput. Neurosci. 2, 5–18 (1995)CrossRefzbMATHGoogle Scholar
  21. 21.
    Buchner, E.: Behavioural analysis of spatial vision in insects. In: Ali, M.A. (ed.) Photoreception and Vision in Invertebrates, pp. 561–621. Springer, New York (1984). doi: 10.1007/978-1-4613-2743-1_16 CrossRefGoogle Scholar
  22. 22.
    Chahl, J.S.: Range and egomotion estimation from compound photodetector arrays with parallel optical axis using optical flow techniques. Appl. Opt. 53, 368–375 (2014)CrossRefGoogle Scholar
  23. 23.
    Land, M.F.: Visual acuity in insects. Annu. Rev. Entomol. 42, 147–177 (1997)CrossRefGoogle Scholar
  24. 24.
    Lindemann, J.P., Kern, R., van Hateren, J.H., Ritter, H., Egelhaaf, M.: On the computations analyzing natural optic flow: quantitative model analysis of the blowfly motion vision pathway. J. Neurosci. 25, 6435–6448 (2005)CrossRefGoogle Scholar
  25. 25.
    Bertrand, O.J.N., Lindemann, J.P., Egelhaaf, M.: A bio-inspired collision avoidance model based on spatial information derived from motion detectors leads to common routes. PLoS Comput. Biol. 11, e1004339 (2015)CrossRefGoogle Scholar
  26. 26.
    Kim, A.J., Fitzgerald, J.K., Maimon, G.: Cellular evidence for efference copy in Drosophila visuomotor processing. Nat. Neurosci. 18, 1247–1255 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of BioengineeringImperial College LondonLondonUK

Personalised recommendations