Advertisement

Mathematical Modeling to Improve Control of Mesh Body for Peristaltic Locomotion

  • Yifan HuangEmail author
  • Akhil Kandhari
  • Hillel J. Chiel
  • Roger D. Quinn
  • Kathryn A. Daltorio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)

Abstract

In this work, we built a kinematic simulation model for our worm robot, which does peristaltic locomotion. We studied the construction of our robot’s mesh-rhombus structure and the structural behavior in response to the actuator controls and simulated them in MATLAB. With some kinematic assumptions, we can model changes in body shape. Friction, gravity, internal forces are not directly modeled, however a single correction factor can be used to align the simulation and hardware progress. New control methods are found based on this model, which reduced the motion slip on the robot. In future work, this simulation can help us control and design future mesh-based robots.

Keywords

Soft robotics Earthworm-inspired kinematics Simulation Cable actuation 

References

  1. 1.
    Horchler, A.D., Kandhari, A., Daltorio, K.A., Moses, K.C., Ryan, J.C., Stultz, K.A., Kanu, E.N., Andersen, K.B., Kershaw, J., Bachmann, R.J., Chiel, H.J., Quinn, R.D.: Peristaltic locomotion of a modular mesh-based worm robot: precision. Compliance Friction Soft Robot. 2(4), 135–145 (2015)CrossRefGoogle Scholar
  2. 2.
    Boxerbaum, A.S., Horchler, A.D., Shaw, K.M., Chiel, H.J., Quinn, R.D.: 2012 worms, waves and robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3537–3538 (2012)Google Scholar
  3. 3.
    Seok, S., Onal, C.D., Cho, K.-J., Wood, R.J., Rus, D., Kim, S.: Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Trans. Mechatron. 18(5), 1485–1497 (2013)CrossRefGoogle Scholar
  4. 4.
    Mangan, E.V., Kingsley, D.A., Quinn, R.D., Chiel, H.J.: 2002 Development of a peristaltic endoscope. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 347–352 (2002)Google Scholar
  5. 5.
    Gray, J., Lissmann, H.W.: Studies in animal locomotion VII. locomotory reflexes in the earthworm. J. Exp. Biol. 15, 506–517 (1938)Google Scholar
  6. 6.
    Fang, H., Li, S., Wang, K.W., Xu, J.: On the periodic gait stability of a multi-actuated spring-mass hopper model via partial feedback linearization. Nonlinear Dynamics (2015)Google Scholar
  7. 7.
    Daltorio, K.A., Boxerbaum, A.S., Horchler, A.D., Shaw, K.M., Chiel, H.J., Quinn, R.D.: Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots. Bioinspir. Biomim. 8(3), 035003 (2013)CrossRefGoogle Scholar
  8. 8.
    Omori, H., Nakamura, T., Iwanaga, T., Hayakawa, T.: Development of mobile robots based on peristaltic crawling of an earthworm. In: Abdellatif, H. (ed.) Robotics Current and Future Challenges, InTech (2010)Google Scholar
  9. 9.
    Connolly, F., Walsh, C.J., Bertoldi, K.: Automatic design of fiber-reinforced soft actuators for trajectory matching. PNAS 114, 51–56 (2017)CrossRefGoogle Scholar
  10. 10.
    Zarrouk, D., Sharf, I., Shoham, M.: Analysis of earthworm-like robotic locomotion on compliant surfaces. In: International Conference on Robotics and Automation (ICRA) (2010)Google Scholar
  11. 11.
    Horchler, A.D., et al.: Worm-like robotic locomotion with a compliant modular mesh. In: Wilson, S., Verschure, P., Mura, A., Prescott, T. (eds.) Living Machines 2015. LNCS, vol. 9222, pp. 26–37. Springer, Cham (2015). doi: 10.1007/978-3-319-22979-9_3 CrossRefGoogle Scholar
  12. 12.
    Kandhari, A., Horchler, A.D., Zucker, G.S., Daltorio, K.A., Chiel, H.J., Quinn, R.D.: Sensing contact constraints in a worm-like robot by detecting load anomalies. In: Lepora, N., Mura, A., Mangan, M., Verschure, P., Desmulliez, M., Prescott, T. (eds.) Living Machines 2016. LNCS, vol. 9793, pp. 97–106. Springer, Cham (2016). doi: 10.1007/978-3-319-42417-0_10 CrossRefGoogle Scholar
  13. 13.
    Ross, D., Lagogiannis, K., Webb, B.: A model of larval biomechanics reveals exploitable passive properties for efficient locomotion. In: Wilson, S., Verschure, P., Mura, A., Prescott, T. (eds.) Living Machines 2015. LNCS, vol. 9222, pp. 1–12. Springer, Cham (2015). doi: 10.1007/978-3-319-22979-9_1 CrossRefGoogle Scholar
  14. 14.
    Mehringer, A.G., Kandhari, A., Chiel, H.J., Quinn, R.D., Daltorio, K.A.: An integrated compliant fabric skin softens, lightens, and simplifies a mesh robot. Living Machines (accepted) (2017)Google Scholar
  15. 15.
    Kandhari, A., Huang, Y., Daltorio, K.A., Chiel, H.J., Quinn, R.D.: Longitudinal stiffness affects forward locomotion while circumferential stiffness affects turning in a soft bodied earthworm like robot (2017, in preparation)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yifan Huang
    • 1
    Email author
  • Akhil Kandhari
    • 1
  • Hillel J. Chiel
    • 2
  • Roger D. Quinn
    • 1
  • Kathryn A. Daltorio
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringCase Western Reserve UniversityClevelandUSA
  2. 2.Department of Biology, Neurosciences and Biomedical EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations