Simulation of Human Balance Control Using an Inverted Pendulum Model

  • Wade W. HiltsEmail author
  • Nicholas S. Szczecinski
  • Roger D. Quinn
  • Alexander J. Hunt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)


Human balance control is a complex feedback system that must be adaptable and robust in an infinitely varying external environment. It is probable that there are many concurrent control loops occurring in the central nervous system that achieve stability for a variety of postural perturbations. Though many engineering models of human balance control have been tested, no models of how these controllers might operate within the nervous system have yet been developed. We have created a synthetic nervous system that provides Proportional-Derivative (PD) control to a single jointed inverted pendulum model of human balance. In this model, angular position is measured at the ankle and corrective torque is applied about the joint to maintain a vertical orientation. The neural network computes the derivative of the angular position error, which allows the system to maintain an unstable equilibrium position and provide corrections at perturbations. This controller demonstrates the most basic components of human balance control, and will be used as the basis for more complex controllers and neuromechanical models in future work.



The authors would like to acknowledge the support by the NASA Office of the Chief Technologist, Grant Number NNX12AN24H.


  1. 1.
    Horak, F.B., Macpherson, J.M.: Postural orientation and equilibrium. In: Terjung, R. (ed.) Comprehensive Physiology. Wiley Inc., Hoboken (1996)Google Scholar
  2. 2.
    Horak, F.B.: Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing 35(Supplement 2), ii7–ii11 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Peterka, R.J.: Simplifying the complexities of maintaining balance. IEEE Eng. Med. Biol. Mag. 22(2), 63–68 (2003)CrossRefGoogle Scholar
  4. 4.
    Peterka, R.J., Loughlin, P.J.: Dynamic regulation of sensorimotor integration in human postural control. J. Neurophysiol. 91(1), 410–423 (2004)CrossRefGoogle Scholar
  5. 5.
    Chiba, R., Takakusaki, K., Ota, J., Yozu, A., Haga, N.: Human upright posture control models based on multisensory inputs; in fast and slow dynamics. Neurosci. Res. 104, 96–104 (2016)CrossRefGoogle Scholar
  6. 6.
    Maurer, C., Mergner, T., Peterka, R.J.: Multisensory control of human upright stance. Exp. Brain Res. 171(2), 231 (2006)CrossRefGoogle Scholar
  7. 7.
    Mergner, T., Maurer, C., Peterka, R.J.: A multisensory posture control model of human upright stance. Prog. Brain Res. 142, 189–201 (2003). ElsevierCrossRefGoogle Scholar
  8. 8.
    Peterka, R.J.: Sensorimotor integration in human postural control. J. Neurophysiol. 88(3), 1097–1118 (2002)Google Scholar
  9. 9.
    Hunt, A.J., Schmidt, M., Fischer, M.S., Quinn, R.D.: A biologically based neural system coordinates the joints and legs of a tetrapod. Bioinspir. Biomim. 10(5), 055004 (2015)CrossRefGoogle Scholar
  10. 10.
    Szczecinski, N.S., Chrzanowski, D.M., Cofer, D.W., Moore, D.R., Terrasi, A.S., Martin, J.P., Ritzmann, R.E., Quinn, R.D.: MantisBot: a platform for investigating mantis behavior via real-time neural control. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) LIVINGMACHINES 2015. LNCS, vol. 9222, pp. 175–186. Springer, Cham (2015). doi: 10.1007/978-3-319-22979-9_18 CrossRefGoogle Scholar
  11. 11.
    Hunt, A.J., Szczecinski, N.S., Andrada, E., Fischer, M.S., Quinn, R.D.: Using animal data and neural dynamics to reverse engineer a neuromechanical rat model. Biomim. Biohybrid Syst. Living Mach. 2015, 211–222 (2015)CrossRefGoogle Scholar
  12. 12.
    Szczecinski, N.S., Brown, A.E., Bender, J.A., Quinn, R.D., Ritzmann, R.E.: A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus discoidalis. Biol. Cybern. 108(1), 1–21 (2013)CrossRefGoogle Scholar
  13. 13.
    Li, W., Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A neural network with central pattern generators entrained by sensory feedback controls walking of a bipedal model. In: Lepora, N.F.F., Mura, A., Mangan, M., Verschure, P.F.M.J.F.M.J., Desmulliez, M., Prescott, T.J.J. (eds.) Living Machines 2016. LNCS, vol. 9793, pp. 144–154. Springer, Cham (2016). doi: 10.1007/978-3-319-42417-0_14 CrossRefGoogle Scholar
  14. 14.
    Szczecinski, N.S., Hunt, A.J., Quinn, R.: Design process and tools for dynamic neuromechanical models and robot controllers. Biol. Cybern. 111(1), 105–127 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bosco, G., Poppele, R.E.: Representation of multiple kinematic parameters of the cat hindlimb in spinocerebellar activity. J. Neurophysiol. 78(3), 1421–1432 (1997)Google Scholar
  16. 16.
    Cofer, D.W., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W.J., Edwards, D.H.: AnimatLab: a 3D graphics environment for neuromechanical simulations. J. Neurosci. Methods 187(2), 280–288 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Wade W. Hilts
    • 1
    Email author
  • Nicholas S. Szczecinski
    • 2
  • Roger D. Quinn
    • 2
  • Alexander J. Hunt
    • 1
  1. 1.Department of Mechanical and Materials EngineeringPortland State UniversityPortlandUSA
  2. 2.Department of Mechanical and Aerospace EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations