Skip to main content

Effects of Locomotive Drift in Scale-Invariant Robotic Search Strategies

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10384))

Included in the following conference series:

Abstract

Robots play a fundamental role in the exploration of environments that are harmful to humans or animals: robotic probes can reach deep into the earth’s crust, explore our oceans, traverse high radiation areas, navigate in outer space, etc. The harsh conditions and large amounts of uncertainty of these environments can complicate the use of global positioning systems, and in some cases robots have to depend exclusively in local information as external position landmarks are not available. Lévy walks are increasingly studied as effective solutions in these exploratory contexts. The superdiffusive (dispersive) properties of these forms of random walks are often exploited by many animal species, in particular when tackling search problems that have uncertainty. Based on experimentation with low-cost mobile robots, this work has characterized how long-term motion drift (which is inherent to search contexts that lack global positioning systems) can have an effect in the overall characteristics of Lévy trajectories. The results show that Lévy-based searches can be robust and maintain superdiffusive properties for some ranges of motion drift parameters that are closely related to the scale of the search problem. Locomotive drift seems to act effectively as a long-term truncation parameter that could be corrected or even incorporated during the design of a search task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/carlosgs/GNBot/wiki.

References

  1. Marjovi, A., Marques, L.: Multi-robot olfactory search in structured environments. Robot. Auton. Syst. 59(11), 867–881 (2011)

    Google Scholar 

  2. Hu, J., Xu, J., Xie, L.: Cooperative search and exploration in robotic networks. Unmanned Syst. 01(01), 121–142 (2013)

    Article  Google Scholar 

  3. Sugiyama, H., Tsujioka, T., Murata, M.: Real-time exploration of a multi-robot rescue system in disaster areas. Adv. Robot. 27(17), 1313–1323 (2013)

    Article  Google Scholar 

  4. Hollinger, G.A., Yerramalli, S., Singh, S., Mitra, U., Sukhatme, G.S.: Distributed data fusion for multirobot search. IEEE Trans. Robot. 31(1), 55–66 (2015)

    Article  Google Scholar 

  5. Shlesinger, M.F., Klafter, J.: Lévy walks versus Lévy flights. In: Stanley, H.E., Ostrowsky, N. (eds.) On Growth and Form, pp. 279–283. Springer, Dordrecht (1986)

    Chapter  Google Scholar 

  6. Zaburdaev, V., Denisov, S., Klafter, J.: Lévy walks. Rev. Mod. Phys. 87(2), 483–530 (2015)

    Article  Google Scholar 

  7. Humphries, N.E.M., Queiroz, N., Dyer, J.R.M., Pade, N.G., Musyl, M.K., Schaefer, K.M., Fuller, D.W., Brunnschweiler, J.M., Doyle, T.K., Houghton, J.D.R., Hays, G.C., Jones, C.S., Noble, L.R., Wearmouth, V.J., Southall, E.J., Sims, D.W.: Environmental context explains Lévy and brownian movement patterns of marine predators. Nature 465(7301), 1066–1069 (2010)

    Article  Google Scholar 

  8. Reynolds, A.: Liberating Lévy walk research from the shackles of optimal foraging. Phys. Life Rev. 14, 59–83 (2015)

    Article  Google Scholar 

  9. Nurzaman, S.G., Matsumoto, Y., Nakamura, Y., Koizumi, S., Ishiguro, H.: ‘Yuragi’-based adaptive mobile robot search with and without gradient sensing: from bacterial chemotaxis to a levy walk. Adv. Robot. 25(16), 2019–2037 (2011)

    Article  Google Scholar 

  10. Mohanty, P.K., Parhi, D.R.: Cuckoo search algorithm for the mobile robot navigation. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Dash, S.S. (eds.) SEMCCO 2013. LNCS, vol. 8297, pp. 527–536. Springer, Cham (2013). doi:10.1007/978-3-319-03753-0_47

    Chapter  Google Scholar 

  11. Stevens, T., Chung, T.H.: Autonomous search and counter-targeting using Levy search models. In: 2013 IEEE International Conference on Robotics and Automation, pp. 3953–3960 (2013)

    Google Scholar 

  12. Sutantyo, D., Levi, P., Moslinger, C., Read, M.: Collective-adaptive Lévy flight for underwater multi-robot exploration. In: 2013 IEEE International Conference on Mechatronics and Automation (IEEE ICMA 2013) (2013)

    Google Scholar 

  13. Fioriti, V., Fratichini, F., Chiesa, S., Moriconi, C.: Levy foraging in a dynamic environment extending the Levy search. Int. J. Adv. Robot. Syst. 12(7), 98 (2015)

    Article  Google Scholar 

  14. Fricke, G.M., Hecker, J.P., Cannon, J.L., Moses, M.E.: Immune-inspired search strategies for robot swarms. Robotica 34(08), 1791–1810 (2016)

    Article  Google Scholar 

  15. Katada, Y., Nishiguchi, A., Moriwaki, K., Watakabe, R.: Swarm robotic network using Lévy flight in target detection problem. Artif. Life Robot. 21(3), 295–301 (2016)

    Article  Google Scholar 

  16. Mohanty, P.K., Parhi, D.R.: Optimal path planning for a mobile robot using cuckoo search algorithm. J. Exper. Theor. Artif. Intell. 28(1–2), 35–52 (2016)

    Article  Google Scholar 

  17. Tromer, R.M., Barbosa, M.B., Bartumeus, F., Catalan, J., da Luz, M.G.E., Raposo, E.P., Viswanathan, G.M.: Inferring Lévy walks from curved trajectories: A rescaling method. Phys. Rev. E 92(2), 22147 (2015)

    Article  Google Scholar 

  18. García-Saura, C., Borja Rodríguez, F., Varona, P.: Design principles for cooperative robots with uncertainty-aware and resource-wise adaptive behavior. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds.) Living Machines 2014. LNCS, vol. 8608, pp. 108–117. Springer, Cham (2014). doi:10.1007/978-3-319-09435-9_10

    Google Scholar 

  19. Garcia-Saura, C.: Self-calibration of a differential wheeled robot using only a gyroscope and a distance sensor. CoRR, abs/1509.02154 (2015)

    Google Scholar 

Download references

Acknowledgements

We acknowledge support from MINECO/FEDER DPI2015-65833-P, TIN2014-54580-R (http://www.mineco.gob.es/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Garcia-Saura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Garcia-Saura, C., Serrano, E., Rodriguez, F.B., Varona, P. (2017). Effects of Locomotive Drift in Scale-Invariant Robotic Search Strategies. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63537-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63536-1

  • Online ISBN: 978-3-319-63537-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics