Development of Novel Foam-Based Soft Robotic Ring Actuators for a Biomimetic Peristaltic Pumping System

  • Falk EsserEmail author
  • Tibor Steger
  • David Bach
  • Tom Masselter
  • Thomas Speck
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)


Peristaltic pumping in nature allows for the transport of various media in a simple and secure way. Different types of peristaltic pumps exist in the application area of soft robotics. Most systems are based on pneumatic network (pneu-net) fluidic elastomer actuators or artificial muscle actuators. In this study the development of a pump actuated by foam-based, flexible, compliant and lightweight ring actuators is presented. Utilizing a custom built pump test bench the soft robotic ring actuators are characterized in terms of contraction rate and volumetric displacement. Furthermore we introduce a flexible and elastic soft robotic peristaltic pumping system as an alternative to conventional technical pumps.


Foam-based ring actuators Soft robotics Peristaltic pumping system Biomimetics 


  1. 1.
    Vogel, S.: Living in a physical world X. Pumping fluids through conduits. J. Biosci. 32, 207–222 (2007). doi: 10.1007/s12038-007-0021-4 CrossRefGoogle Scholar
  2. 2.
    Pass, G.: Accessory pulsatile organs: evolutionary innovations in insects. Ann. Rev. Entomol. 45, 495–518 (2000). doi: 10.1146/annurev.ento.45.1.495 CrossRefGoogle Scholar
  3. 3.
    Jaffrin, M.Y., Shapiro, A.H.: Peristaltic pumping. Ann. Rev. Fluid Mech. 3, 13–37 (1971). doi: 10.1146/annurev.fl.03.010171.000305 CrossRefGoogle Scholar
  4. 4.
    Bach, D., Schmich, F., Masselter, T., Speck, T.: A review of selected pumping systems in nature and engineering - potential biomimetic concepts for improving displacement pumps and pulsation damping. Bioinspirat. Biomimet. 10 (2015). doi: 10.1088/1748-3190/10/5/051001
  5. 5.
    Karassik, I.J., Cooper, P., Messina, J.P., Heald, C.C. (eds.) Pump Handbook, 4th edn. Mc Graw Hill, New York (2008). doi: 10.1002/aic.690220632
  6. 6.
    Esser, F., Bach, D., Masselter, T., Speck, T.: Nature as concept generator for novel biomimetic pumping systems. In: Bionik: Patente aus der Natur, Tagungsbeiträge zum 8. Bionik-Kongress in Bremen, pp. 116–122 (2017). ISBN 978-3-00-055030-0Google Scholar
  7. 7.
    Dirven, S., Xu, W., Cheng, L.K., Allen, J., Bronlund, J.: Biologically-inspired swallowing robot for investigation of texture modified foods. Int. J. Biomechatron. Biomed. Robot. 2, 163–171 (2013). doi: 10.1504/IJBBR.2013.058719 CrossRefGoogle Scholar
  8. 8.
    Dirven, S., Xu, W., Cheng, L.K.: Sinusoidal peristaltic waves in soft actuator for mimicry of esophageal swallowing. IEEE/ASME Trans. Mechatron. 20, 1331–1337 (2015). doi: 10.1109/TMECH.2014.2337291 CrossRefGoogle Scholar
  9. 9.
    Chen, F., Dirven, S., Xu, W., Li, X.: Large-deformation model of a soft-bodied esophageal actuator driven by air pressure. IEEE/ASME Trans. Mechatron. 22, 81–90 (2017). doi: 10.1109/TMECH.2016.2612262 CrossRefGoogle Scholar
  10. 10.
    Zhu, M., Xu, W., Cheng, L.K.: Measuring and imaging of a soft-bodied swallowing robot conduit deformation and internal structural change using videofluoroscopy. In: 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP), pp 1–6 (2016). doi: 10.1109/M2VIP.2016.7827312
  11. 11.
    Zhu, M., Xu, W., Cheng, L.K.: Esophageal peristaltic control of a soft-bodied swallowing robot by the central pattern generator. IEEE/ASME Trans. Mechatron. 22, 91–98 (2017). doi: 10.1109/TMECH.2016.2609465 CrossRefGoogle Scholar
  12. 12.
    Suzuki, K., Nakamura, T.: Development of a peristaltic pump based on bowel peristalsis using for artificial rubber muscle. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3085–3090 (2010). doi: 10.1109/IROS.2010.5653006
  13. 13.
    Kimura, Y., Saito, K., Nakamura, T.: Development of an exsufflation system for peristaltic pump based on bowel peristalsis. In: 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1235–1240 (2013). doi: 10.1109/AIM.2013.6584263
  14. 14.
    Yoshihama, S., Takano, S., Yamada, Y., Nakamura, T., Kato, K.: Powder conveyance experiments with peristaltic conveyor using a pneumatic artificial muscle. In: 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1539–1544 (2016). doi: 10.1109/AIM.2016.7576989
  15. 15.
    Mac Murray, B.C., An, X., Robinson, S.S., van Meerbeek, I.M., O’Brien, K.W., Zhao, H., Shepherd, R.F.: Poroelastic foams for simple fabrication of complex soft robots. Adv. Mater. 27, 6334–6340 (2015). doi: 10.1002/adma.201503464 CrossRefGoogle Scholar
  16. 16.
    Chen, F.J., Dirven, S., Xu, W.L., Bronlund, J., Li, X.N., Pullan, A.: Review of the swallowing system and process for a biologically mimicking swallowing robot. Mechatronics 22, 556–567 (2012). doi: 10.1016/j.mechatronics.2012.02.005 CrossRefGoogle Scholar
  17. 17.
    Walsh, J.H., Leigh, M.S., Paduch, A., Maddison, K.J., Philippe, D.L., Armstrong, J.J., Sampson, D.D., Hillman, D.R., Eastwood, P.R.: Evaluation of pharyngeal shape and size using anatomical optical coherence tomography in individuals with and without obstructive sleep apnoea. J. Sleep Res. 17, 230–238 (2008). doi: 10.1111/j.1365-2869.2008.00647.x CrossRefGoogle Scholar
  18. 18.
    Brasseur, J.G.: A fluid mechanical perspective on esophageal bolus transport. Dysphagia 2, 32–39 (1987). doi: 10.1007/BF02406976 CrossRefGoogle Scholar
  19. 19.
    Smooth-on safety data sheets. In: Smooth-On, Inc.
  20. 20.
    Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A.: Fiji: an open-source platform for biological-image analysis. Nat. Meth. 9, 676–682 (2012). doi: 10.1038/nmeth.2019 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Falk Esser
    • 1
    • 2
    Email author
  • Tibor Steger
    • 1
  • David Bach
    • 1
    • 2
  • Tom Masselter
    • 1
  • Thomas Speck
    • 1
    • 2
  1. 1.Plant Biomechanics Group, Faculty of BiologyBotanic Garden University FreiburgFreiburg im BreisgauGermany
  2. 2.FMF – Freiburg Materials Research CenterFreiburg im BreisgauGermany

Personalised recommendations