Straight Swimming Algorithm Used by a Design of Biomimetic Robotic Fish

  • M. O. AfolayanEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)


Teleost species of fish mostly move with their peduncle. They are the fastest moving underwater creature. In this work, focus is specifically on the algorithm that was used for propelling a design of a robotic fish based on Mackerel in a straight swimming motion. The approach used is fundamentally called built in motion pattern algorithm as against follow the leader approach and mathematically generated serpentine motion used in hyper-redundant robot motion control strategies. The design requires just 3 actuators (RC servomotors) that are controlled using Microchip PIC18F4520 microcontroller. The 3 PWM controlling the motors are dynamically adjusted to be at fixed phase to each other at all times. This design was able to produce a travelling wave which propels the robot forward. Though not a very flexible implementation in terms of dynamically reprogramming the robot firmware while executing code, like the other methods that involve onboard mathematical position generation, it can however save battery life. This method works perfectly because of the unique design of the robot hardware. A field test yield 1/3 of the speed (3.66 km/h) of a life Mackerel.


Biomimicry Robotic fish Swimming 


  1. 1.
    NMRI: National Maritime Research Institute (2000). Accessed 4 July 2013
  2. 2.
    Jindong, L., Huosheng, H.: A methodology of modelling fish-like swim patterns for robotic fish. In: Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, 5–8 August 2007, Harbin, China, pp. 1316–1321 (2007)Google Scholar
  3. 3.
    Streitlien, K., Triantafyllou, G.S., Triantafyllou, M.S.: Efficient foil propulsion through vortex control. AIAA J. 34, 2315–2319 (1996)CrossRefzbMATHGoogle Scholar
  4. 4.
    Anderson, J.M.: Vorticity control for efficient propulsion. Ph.D. dissertation, Massachusetts Inst. Technol./Woods Hole Oceanographic Inst. Joint Program, Woods Hole, MA (1996)Google Scholar
  5. 5.
    Guo, S., Fukuda, T., Kato, N., Oguro, K.: Development of underwater microrobot using ICPF actuator. In: Proceedings of the 1998 IEEE International Conference on Robotics & Automation, pp. 1829–1834 (1998)Google Scholar
  6. 6.
    Kato, N.: Control performance in the horizontal plane of a fish robot with mechanical pectoral fins. IEEE J. Ocean. Eng. 25, 121–129 (2000)CrossRefGoogle Scholar
  7. 7.
    Liang, J.: Researchful development of underwater Robofish II- development of a small experimental robofish. Robot 24(3), 234–238 (2002)Google Scholar
  8. 8.
    Yu, J.Z., Chen, E.K., Wang, S., Tan, M.: research evolution and analysis of biomimetic robot fish. Control Theor. Appl. 20(4), 1–10 (2002)Google Scholar
  9. 9.
    Jindong, L., Huosheng, H.: Building a 3D simulator for autonomous navigation of robotic fishes. In: Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 28 September–2 October 2004, Sendai, Japan, pp. 613– 618 (2004)Google Scholar
  10. 10.
    Yamada, H., Chigisaki, S., Mori, M., Takita, K., Ogami, K., Hirose, S.: Development of amphibious snake-like robot ACM-R5, ISR2005. In: Proceedings of ISR 2005, p. 133 (2005)Google Scholar
  11. 11.
    William, C.: Snake-like robot can crawl on land or swim (2013). Accessed 1 June 2013
  12. 12.
    Yamada, H., Hirose, S.: Development of practical 3-dimensional active cord mechanism ACM-R4. J. Rob. Mech. 18(3), 305–311 (2006)Google Scholar
  13. 13.
    Jindong, L., Huosheng, H.: Building a simulation environment for optimising control parameters of an autonomous robotic fish. In: Proceedings of the 9th Chinese Automation & Computing Society Conference in the UK, Luton, England, 20 September 2003, pp. 317–322 (2003)Google Scholar
  14. 14.
    Kevin, J.D.: Limbless locomotion: learning to crawl with a snake robot. A Ph.D. thesis at the Robotics Institute Carnegie Mellon University, 5000 Forbes Avenue, Pittsburg, PA 15213 (1997)Google Scholar
  15. 15.
    Shugen, M.A., Watanabe, M.: Time-optimal control of kinematically redundant manipulators with limit heat characteristics of actuators. Adv. Rob. 16(8), 735–749 (2002)CrossRefGoogle Scholar
  16. 16.
    Masayuki, A., Yoshinori, T., Hirose, S.: Development of “Souryu-VI” and “Souryu-V:” serially connected crawler vehicles for in-rubble searching operations. J. Field Rob. 25, 31–65 (2008). doi: 10.1002/rob.20229 CrossRefGoogle Scholar
  17. 17.
    Choset, H., Lee, J.Y.: Sensor-based construction of a retract-like structure for a planar rod robot. IEEE Trans. Rob. 17, 435–449 (2001)CrossRefGoogle Scholar
  18. 18.
    Kier, W.M., Smith, K.K.: Tongues, tentacle and trunks: the biomechanics of movement in muscular-hydrostat. Zool. J. Linn. Soc. 83, 307–324 (1985)CrossRefGoogle Scholar
  19. 19.
    Skierczynski, B.A., Wilson, R.J.A., Kristian Jr., W.B., Skalak, R.: A model of the hydrostatic skeleton of the Leech. J. Theor. Biol. 181, 329–342 (1996)CrossRefGoogle Scholar
  20. 20.
    Wilbur, C., Vorus, W., Cao, Y., Currie, S.: A lamprey-based undulatory vehicle. In: Ayers, J., Davis, J., Rudolph, A. (eds.) Neurotechnology for Bio-mimetic Robots, pp. 285–296. MIT Press, Cambridge (2002)Google Scholar
  21. 21.
    Crespi, A., Badertscher, A., Guignard, A., Ijspeert, A.J.: Amphibot I: an amphibious snake-like robot. Rob. Auton. Syst. 50, 163–175 (2005)CrossRefGoogle Scholar
  22. 22.
    Robinson, G., Davies, J.B.C.: Continuum robots - a state of the art. In: IEEE Conference on Robotics and Automation, pp. 2849–2854 (1999)Google Scholar
  23. 23.
    Gwenaël, A.: Control of a free-swimming fish using fuzzy logic. Int. J. Virtual Real. 6(3), 23–28 (2007)Google Scholar
  24. 24.
    Morgansen, K.A., Triplett, B.I., Klein, D.J.: Geometric methods for modeling and control of free-swimming fin-actuated underwater vehicles. IEEE Trans. Rob. 23(6), 1184–1199 (2007)CrossRefGoogle Scholar
  25. 25.
    Mbemmo, E., Chen, Z., Shatara, S., Tan, X.: Modeling of biomimetic robotic fish propelled by an ionic polymer-metal composite actuator. IEEE/ASME Trans. Mech. 15(3), 448–452 (2010)CrossRefGoogle Scholar
  26. 26.
    Korkmaz, D., Ozmen, K.G., Akpolat, Z.H.: Robust forward speed control of a robotic fish. In: 6th International Advanced Technologies Symposium (IATS 2011), 16–18 May 2011, Elazig, Turkey, pp. 33–38 (2011)Google Scholar
  27. 27.
    Taylor, G.: Analysis of the swimming of long narrow animals. Proc. R. Soc. Lond. A 214, 158–183 (1952)CrossRefzbMATHGoogle Scholar
  28. 28.
    Wu, T.Y.: Swimming of a waving plate. J. Fluid Mech. 10, 321–344 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Anderson, J.M., Streitlien, K., Barrett, D.S., Triantafyllou, M.S.: Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 41–72 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Jindong, L., Huosheng, H.: Mimicry of sharp turning behaviours in a robotic fish. In: Proceedings of the 2005 IEEE. International Conference on Robotics and Automation, Barcelona, Spain, April 2005, pp. 3329–3334 (2005)Google Scholar
  31. 31.
    Lighthill, M.J.: Note on the swimming of slender fish. J. Fluid Mech. 9, 305–317 (1960). Abstract and introduction onlyMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentAhmadu Bello UniversityZariaNigeria

Personalised recommendations