Skip to main content

Problems and Techniques

  • Chapter
  • First Online:
  • 348 Accesses

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

Abstract

When biological networks are considered, the extraction of interesting knowledge often involves subgraphs isomorphism check that is known to be NP-complete. For this reason, many approaches try to simplify the problem under consideration by considering structures simpler than graphs, such as trees or paths. Furthermore, the number of existing approximate techniques is notably greater than the number of exact methods. In this chapter, we provide an overview of three important problems defined on biological networks: network alignment, network clustering, and motifs extraction from biological networks. For each of these problems, we also describe some of the most important techniques proposed to approach them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adamcsek, B., et al.: CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22(8), 1021–1023 (2006)

    Article  Google Scholar 

  2. Amelio, A., Apostolico, A., Rombo, S.E.: Image compression by 2D motif basis. In: Data Compression Conference (DCC’11), pp. 153–162 (2011)

    Google Scholar 

  3. Apostolico, A., et al.: Finding 3d motifs in ribosomal rna structures. Nucl. Acids Res. (2008)

    Google Scholar 

  4. Apostolico, A., Parida, L.: Incremental paradigms of motif discovery. J. Comput. Biol. 11(1), 15–25 (2004)

    Article  Google Scholar 

  5. Apostolico, A., Bock, M.E., Lonardi, S.: Monotony of surprise and large-scale quest for unusual words. J. Comput. Biol. 10(2/3), 283–311 (2003)

    Article  Google Scholar 

  6. Apostolico, A., Parida, L., Rombo, S.E.: Motif patterns in 2D. Theor. Comput. Sci. 390(1), 40–55 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bader, G., Hogue, H.: An automated method for finding molecular complexes in large protein-protein interaction networks. BMC Bioinform. 4(2) (2003)

    Google Scholar 

  8. Bandyopadhyay, S., Sharan, R., Ideker, T.: Systematic identification of functional orthologs based on protein network comparison. Genome Res. 16(3), 428–435 (2006)

    Article  Google Scholar 

  9. Berg, J., Lassig, M.: Local graph alignment and motif search in biological networks. Proc. Natl. Acad. Sci. USA 101(41), 14689–14694 (2004)

    Article  Google Scholar 

  10. Bruckner, S., Hüffner, F., Karp, R.M., Shamir, R., Sharan, R.: Torque: topology-free querying of protein interaction networks. Nucl. Acids Res. 37(Web-Server-Issue), 106–108 (2009)

    Google Scholar 

  11. Cheng, C.Y., Huang, C.Y., Sun, C.T.: Mining bridge and brick motifs from complex biological networks for functionally and statistically significant discovery. IEEE Trans. Syst. Man Cybern. Part B 38(1), 17–24 (2008)

    Article  Google Scholar 

  12. Ciriello, G., Guerra, C.: A review on models and algorithms for motif discovery in protein-protein interaction network. Brief. Funct. Genomics Proteomics (2008)

    Google Scholar 

  13. Ciriello, G., Mina, M., Guzzi, P.H., Cannataro, M., Guerra, C.: AlignNemo: A local network alignment method to integrate homology and topology. PLOS One 7(6), e38,107 (2012)

    Google Scholar 

  14. Denielou, Y.P., Boyer, F., Viari, A., Sagot, M.F.: Multiple alignment of biological networks: a flexible approach. In: CPM’09 (2009)

    Google Scholar 

  15. Derenyi, I., Palla, G., Vicsek, T.: Clique percolation in random networks. Phys. Rev. Lett. 94(16), 160–202 (2005)

    Article  MATH  Google Scholar 

  16. Dost, B., et al.: Qnet: a tool for querying protein interaction networks. In: RECOMB’07, pp. 1–15 (2007)

    Google Scholar 

  17. Enright, A., Dongen, S., Ouzounis, C.: An efficient algorithm for large-scale detection of protein families. Nucl. Acids Res. 30(7), 1575–84 (2002)

    Article  Google Scholar 

  18. Erdos, P., Renyi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)

    MathSciNet  MATH  Google Scholar 

  19. Ferraro, N., Palopoli, L., Panni, S., Rombo, S.E.: Master-slave biological network alignment. In: 6th International symposium on Bioinformatics Research and Applications (ISBRA 2010), pp. 215–229 (2010)

    Google Scholar 

  20. Ferraro, N., et al.: Asymmetric comparison and querying of biological networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 8, 876–889 (2011)

    Article  Google Scholar 

  21. Ferro, A., et al.: Netmatch: a cytoscape plugin for searching biological networks. Bioinformatics (2007)

    Google Scholar 

  22. Fionda, V., Palopoli, L., Panni, S., Rombo, S.E.: Protein-protein interaction network querying by a “focus and zoom” approach. In: BIRD’08, pp. 331–346 (2008)

    Google Scholar 

  23. Fionda, V., Panni, S., Palopoli, L., Rombo, S.E.: A technique to search functional similarities in PPI networks. Int. J. Data Mining Bioinform. (To appear)

    Google Scholar 

  24. Flannick, J., Novak, A., Graemlin, S., et al.: General and robust alignment of multiple large interaction networks. Genome Res. 16(9), 1169–1181 (2006)

    Google Scholar 

  25. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  26. Furfaro, A., Groccia, M.C., Rombo, S.E.: Image classification based on 2D feature motifs. In: Flexible Query Answering Systems (FQAS 2013) (2013)

    Google Scholar 

  27. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  28. Grossi, R., Pisanti, N., Crochemore, M., Sagot, M.F.: Bases of motifs for generating repeated patterns with wild cards. IEEE/ACM Trans. Comput. Biol. Bioinform. 2(3), 159–177 (2000)

    Google Scholar 

  29. Jancura, P., et al.: A methodology for detecting the orthology signal in a PPI network at a functional complex level. BMC Bioinform. (2011)

    Google Scholar 

  30. Kalaev, M., Bafna, V., Sharan, R.: Fast and accurate alignment of multiple protein networks. In: RECOMB’08 (2008)

    Google Scholar 

  31. Kelley, B., Yuan, B., Lewitter, F., Sharan, R., Stockwell, B.R., Ideker, T.: Pathblast: a tool for alignment of protein interaction networks. Nucl. Acid Res. 32, W83–W88 (2004)

    Article  Google Scholar 

  32. Kim, W., Li, M., Wang, J., Pan, Y.: Biological network motif detection and evaluation. BMC Syst. Biol. 5(Suppl 3), S5 (2011)

    Article  Google Scholar 

  33. King, A.D., Pržulj, N., Jurisica, I.: Protein complex prediction via cost-based clustering. Bioinformatics 20(17), 3013–3020 (2004)

    Article  Google Scholar 

  34. Klau, G.W.: A new graph-based method for pairwise global network alignment. BMC Bioinform. 10(Suppl. 1), S59 (2009)

    Article  Google Scholar 

  35. Koyuturk, M., Kim, Y., Topkara, U., Subramaniam, S., Szpankowski, W., Grama, A.: Pairwise alignment of protein interaction networks. J. Comput. Biol. 13(2), 182–199 (2006)

    Article  MathSciNet  Google Scholar 

  36. Kuchaiev, O., Przulj, N.: Integrative network alignment reveals large regions of global network similarity in yeast and human. Bioinformatics 27(10), 1390–1396 (2011)

    Article  Google Scholar 

  37. Lacroix, V., Fernandes, C.G., Sagot, M.F.: Motif search in graphs: application to metabolic networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 3(4), 360–368 (2006)

    Article  Google Scholar 

  38. Leskovec, J., Lang, K., Mahoney, M.: Empirical comparison of algorithms for network community detection. In: Proceedings of the International World Wide Web Conference (WWW), pp. 631–640 (2010)

    Google Scholar 

  39. Liao, C.S., et al.: Isorankn: spectral methods for global alignment of multiple protein networks. Bioinformatics 25, i253–i258 (2009)

    Article  Google Scholar 

  40. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE Trans. Comput. Biol. Bioinform. 1(1), 24–45 (2004)

    Google Scholar 

  41. Mangan, S., Alon, U.: Structure and function of the feed-forward loop network motif. Proc. Natl. Acad. Sci. USA 100(21), 11980–11985 (2003)

    Article  Google Scholar 

  42. Mangan, S., Itzkovitz, S., Zaslaver, A., Alon, U.: The incoherent feed-forward loop accelerates the response-time of the gal system of escherichia coli. J. Mol. Biol. 356(5), 1073–1081 (2005)

    Article  Google Scholar 

  43. Milo, R., et al.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  44. Mongiov, M., Sharan, R.: Global alignment of protein-protein interaction networks. In: Mamitsuka, H., DeLisi, C. Kanehisa, M. (eds.) Data Mining for Systems Biology, Methods in Molecular Biology, vol. 939, pp. 21–34. Humana Press (2013)

    Google Scholar 

  45. Neyshabur, B., Khadem1, A., Hashemifar, S., Arab, S.S.: NETAL: a new graph-based method for global alignment of protein?protein interaction networks. Bioinformatics 29(13), 11,654–1662 (2013)

    Google Scholar 

  46. Palla, G., et al.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)

    Article  Google Scholar 

  47. Parida, L.: Pattern Discovery in Bioinformatics. Theory and Algorithms. Chapman and HAll/CRC (2008)

    Google Scholar 

  48. Parida, L.: Discovering topological motifs using a compact notation. J. Comput. Biol. 14(3), 46–69 (2007)

    Article  MathSciNet  Google Scholar 

  49. Park, Y., Song, M.: A genetic algorithm for clustering problems. In: Proceedings of 3rd Annual Conference on Genetic Algorithms, pp. 2–9 (1989)

    Google Scholar 

  50. Pinter, R., et al.: Alignment of metabolic pathways. Bioinformatics 21(16), 3401–3408 (2005)

    Article  Google Scholar 

  51. Pizzuti, C., Rombo, S.E.: Experimental evaluation of topological-based fitness functions to detect complexes in PPI networks. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 193–200 (2012)

    Google Scholar 

  52. Pizzuti, C., Rombo, S.E.: Multi-functional protein clustering in PPI networks. In: Proceedings of the 2nd International Conference on Bioinformatics Research and Development (BIRD), pp. 318–330 (2008)

    Google Scholar 

  53. Pizzuti, C., Rombo, S.E.: Pincoc: a co-clustering based approach to analyze protein-protein interaction networks. In: Proceedings of the 8th International Conference on Intelligent Data Engineering and Automated Learning, pp. 821–830 (2007)

    Google Scholar 

  54. Pizzuti, C., Rombo, S.E.: Restricted neighborhood search clustering revisited: an evolutionary computation perspective. In: Proceedings of the 8th IAPR International Conference on Pattern Recognition in Bioinformatics (PRIB), pp. 59–68 (2013)

    Google Scholar 

  55. Pizzuti, C., Rombo, S.E.: A coclustering approach for mining large protein-protein interaction networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(3), 717–730 (2012)

    Article  Google Scholar 

  56. Rombo, S.E.: Optimal extraction of motif patterns in 2D. Inf. Process. Lett. 109(17), 1015–1020 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  57. Rombo, S.E.: Extracting string motif bases for quorum higher than two. Theor. Comput. Sci. 460, 94–103 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  58. Ruan, J., Zhang, W.: Identifying network communities with a high resolution. Phys. Rev. E 77(1) (2008)

    Google Scholar 

  59. Sharan, R., et al.: From the cover: conserved patterns of protein interaction in multiple species. Proc. Natl. Acad. Sci. USA 102(6), 1974–1979 (2005)

    Article  Google Scholar 

  60. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison. Nat. Biotechnol. 24(4), 427–433 (2006)

    Article  Google Scholar 

  61. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the trascriptional regulation network of escherichia coli. Nature 31, 64–68 (2002)

    Google Scholar 

  62. Shih, Y.K., Parthasarathy, S.: Scalable global alignment for multiple biological networks. BMC Bioinform. 13(Suppl 3), S11 (2012)

    Article  Google Scholar 

  63. Shlomi, T., et al.: Qpath: a method for querying pathways in a protein-protein interaction network. BMC Bioinform. 7 (2006)

    Google Scholar 

  64. Singh, R., Xu, J., Berger, B.: Global alignment of multiple protein interaction networks. In: PSB’08 (2008)

    Google Scholar 

  65. Singh, R., Xu, J., Berger, B.: Pairwise global alignment of protein interaction networks by matching neighborhood topology. In: Research in Computational Molecular Biology (RECOMB 2007), pp. 16–31 (2007)

    Google Scholar 

  66. Van Dongen, S.: Graph clustering via a discrete uncoupling process. SIAM J. Matrix Anal. Appl. 30(1), 121–141 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  67. Wu, X., Liu, Q., Jiang, R.: Align human interactome with phenome to identify causative genes and networks underlying disease families. Bioinformatics 25(1), 98–104 (2009)

    Article  Google Scholar 

  68. Yang, Q., Sze, S.H.: Saga: a subgraph matching tool for biological graphs. J. Comput. Biol. 14(1), 56–67 (2007)

    Article  MathSciNet  Google Scholar 

  69. Yeger-Lotem, E., et al.: Network motifs in integrated cellular networks of transcriptionregulation and proteinprotein interaction. Proc. Natl. Acad. Sci. USA 101(16), 5934–5939 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Fassetti .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Fassetti, F., Rombo, S.E., Serrao, C. (2017). Problems and Techniques. In: Discriminative Pattern Discovery on Biological Networks. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-63477-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63477-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63476-0

  • Online ISBN: 978-3-319-63477-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics