Skip to main content

Modeling, Minimizing and Managing the Risk of Fatigue for Mechanical Components

  • Conference paper
  • First Online:
Stochastic Geometric Mechanics (CIB-SGM 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 202))

Included in the following conference series:

Abstract

Mechanical components that are exposed to cyclic mechanical loading fail at loads that are well below the ultimate tensile strength. This process is known as fatigue . The failure time , that is the time when a first crack forms, is highly random. In this work we review some recent developments in the modelling of probabilistic failure times , understood as the time to the formation of a fatigue crack . We also discuss how probabilistic models can be used in shape design with the intent of optimizing the components’ reliability . We review a recent existence result for optimal shapes and we discuss continuous and discrete shape derivatives. Another application is optimal service scheduling . The mathematical fields involved range from reliability statistics over stochastic point processes , multiscale modeling , PDEs on variable geometries , shape optimization and numerical analysis to operations research .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.calculix.de.

  2. 2.

    Structure of several unit cells having the same orientation.

  3. 3.

    U is distributed according to the Haar measure.

  4. 4.

    Or von Mises stress.

  5. 5.

    According to the von Mises shape modification hypothesis hydrostatic stress conditions with similar principal stress in all directions lead to a value of zero.

  6. 6.

    Confer for example [Evans 2010, 5.5].

  7. 7.

    In (66), the Hessian \(\nabla ^2u\) is a three-dimensional matrix with one index regarding the components of u which contracts with the index of the partial derivatives of \(\nabla \mathcal {F}_{\text {sur}}\), and the other two indices with respect to the partial derivatives which contract with the remaining index of \(\nabla \mathcal {F}_{\text {sur}}\) and with \(\nu \).

  8. 8.

    Here, \(\nabla [M]_{\text {vM}}\) denotes the gradient of the von Mises stress at the value of a matrix \(M\in \mathbb {R}^{3\times 3}\).

References

  • Agmon, S., Douglis, A., Nirenberg. L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. In: Communications On Pure And Applied Mathematics, vol. XII: 623–727 (1959)

    Google Scholar 

  • Agmon, S., Douglis, A., Nirenberg, L: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions ii. In: Communications On Pure And Applied Mathematics, vol. XVII: 35–92 (1964)

    Google Scholar 

  • Bäker, M., Harders, H., Rösler, J.: Mechanisches Verhalten der Werkstoffe. Vieweg\(+\)Teubner, 3rd edn. (2008)

    Google Scholar 

  • Bittner, L., Gottschalk, H.: Optimal reliability for components under thermomechanical cyclic loading. In: Control and Caybernetics, to appear: arXiv:1601.00419v1, (2017)

  • Bolten, M., Gottschalk, H., Schmitz, S.: Minimal failure probability for ceramic design via shape control. J Optim. Theory Appl. 166, 983–1001 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Borrego, L.P., Abreu, L.M., Costa, J.M., Ferreira, J.M.: Analysis of low cycle fatigue in almgsi aluminium alloys. Eng. Fail. Anal. 11, 715–725 (2004)

    Article  Google Scholar 

  • Bucur, D, Buttazzo, G.: Variational Methods in Shape Optimization Problems. Birkhäuser (2005)

    Google Scholar 

  • Chenais, D.: On the existence of a solution in a domain identification problem. J. Math. Anal. Appl. 52, 189–289 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Ciarlet, P: Studies in mathematics and its applications. Mathematical Elasticity - Volume I: Three-Dimensional Elasticity, vol. 20. North-Holland (1988)

    Google Scholar 

  • Eppler, K.: Efficient shape optimization algorithms for elliptic boundary value problems. Habilitation Thesis, Universtity of Chemnitz, March 5 (2007)

    Google Scholar 

  • Eppler, K., Unger, A.: Boundary control of semilinear elliptic equations - existence of optimal solutions. Control Cybern. 26(2), 249–259 (1997)

    MathSciNet  MATH  Google Scholar 

  • Ern, A., Guermond, J.-L.: Therory and Practice of Finite Elements. Springer, New York (2004)

    Book  MATH  Google Scholar 

  • Escobar, L.A., Meeker, W.Q.: Reliability Statistics. Wiley (1998)

    Google Scholar 

  • Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society (2010)

    Google Scholar 

  • Fett, D., Munz, D.: Mechanische Eigenschaften von Keramik. Springer, Berlin (1989)

    Google Scholar 

  • Fujii, N.: Lower semicontinuity in domain optimization problems. J. Optim. Theory Appl 59, 407–422 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  • Gottschalk, H., Schmitz, S.: Optimal reliability in design for fatigue life. Siam J Control Optim. 52(5), 2725–2727 (2015)

    MathSciNet  MATH  Google Scholar 

  • Schmitz, S., Gottschalk, H., Seibel, T., Krause, R., Rollmann, G., Beck, T.: Probabilistic schmid factors and scatter of lcf life. In: Materials Science and Engineering, to appear (2014)

    Google Scholar 

  • Haslinger, J., Mäkinen, R.A.E.: Introduction to Shape Optimization. SIAM (2003)

    Google Scholar 

  • Hertel, O., Vormwald, M.: Statistical and geometrical size effects in notched mem- bers based on weakest-link and short-crack modelling. Eng. Fract. Mech. 95, 72–83 (2012)

    Article  Google Scholar 

  • Kallenberg, O.: Random measures. Akademie Verlag (1982)

    Google Scholar 

  • Pflug, G.C., Römisch, W.: Modeling. World Scientific, Measuring and Managing Risk (2007)

    MATH  Google Scholar 

  • Radaj, D., Vormwald, M.: Ermüdungsfestigkeit, 3rd edn. Springer, Berlin (2007)

    Google Scholar 

  • Schmidt, S.: Efficient Large Scale Aerodynamic Design Based on Shape Calculus. Dissertation, Universität Trier (2010)

    Google Scholar 

  • Schmitz, S.: A Local and Probabilistic Model for Low-Cycle Fatigue.: New Aspects of Structural Analysis. Hartung-Gorre (2014)

    Google Scholar 

  • Schmitz, S., Beck, T., Krause, R., Rollmann, G., Seibel, T., Gottschalk, Hanno: A probabilistic model for lcf. Comput. Mater. Sci. 79, 584–590 (2013)

    Article  Google Scholar 

  • Schmitz, S., Seibel, T., Gottschalk, H., Beck, T., Rollmann, G., Krause, R.: Probabilistic analysis of the lcf crack initiation life for a turbine blade under thermo-mechanical loading. In: Proceedings of the International Conference LCF vol. 7 (2013)

    Google Scholar 

  • Schmitz, S., Seibel, T., Gottschalk, H., Beck, T., Rollmann, G., Krause, R.: Risk estimation of lcf crack initiation. In: Proceedings of the ASME Turbo Exposition, GT2013:94899 (2013)

    Google Scholar 

  • Schulz, V.: A riemannian view on shape optimization. Found. Comput. Math. 14, 483–501 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Sokolovski, J., Zolesio, J.-P.: Introduction to Shape Optimization - Shape Sensitivity Analysis. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  • Sornette, D., Magnin, T., Brechet, Y.: The physical origin of the coffin-manson law in low-cycle fatigue. Europhys. Lett., pp. 433–438 (1992)

    Google Scholar 

  • Watanabe, S.: On discontinuous additive functionals and lévy measures of a markov process. Japan. J. Math., 34 (1964)

    Google Scholar 

  • Weibull, E.W.: A statistical theory of the strength of materials. Ingeniors Vetenskaps Akad. Handl. 151, 1–45 (1939)

    Google Scholar 

Download references

Acknowledgements

Hanno Gottschalk would like to thank Sergio Albeverio, Ana Bela Cruzeiro and Darryl Holm for their kind invitation to the CIB and the staff of CIB for their hospitality. Nadine Moch and Mohamed Saadi have been supported by AG Turbo Project 4.1.2 and 4.1.13 co financed by BMWi and Siemens Energy. We also thank T. Beck (TU Kaiserslautern), B. Beckmann, H. Harders, G. Rollmann and A. Sohail (Siemens Energy) for interesting discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Gottschalk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bittner, L., Gottschalk, H., Gröger, M., Moch, N., Saadi, M., Schmitz, S. (2017). Modeling, Minimizing and Managing the Risk of Fatigue for Mechanical Components. In: Albeverio, S., Cruzeiro, A., Holm, D. (eds) Stochastic Geometric Mechanics . CIB-SGM 2015. Springer Proceedings in Mathematics & Statistics, vol 202. Springer, Cham. https://doi.org/10.1007/978-3-319-63453-1_10

Download citation

Publish with us

Policies and ethics