Skip to main content

Dynamical Friction in a Relativistic Plasma

  • Chapter
  • First Online:
Book cover Particle Interactions in High-Temperature Plasmas

Part of the book series: Springer Theses ((Springer Theses))

  • 475 Accesses

Abstract

As we have seen, relativistic plasmas are relevant to both fusion energy research and high energy astrophysics. Coulomb collisions influence behaviour in many of these systems, such as transport in inertial fusion targets [1], the slowing of fast electrons formed in high intensity laser-plasma interactions [2] (critical to the fast ignition fusion scheme [3]), current drive [4, 5] and electron runaway [6, 7] in tokamaks, the thermalisation of astrophysical plasmas [8, 9] and, potentially, gamma-ray burst emission [10].

This chapter is an enhanced version of a chapter from an original PhD thesis which is available Open Access from the repository https://spiral.imperial.ac.uk/ of Imperial College London. The original chapter was distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any non-commercial use, duplication, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author and the source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do not have permission under this license to share adapted material derived from this book or parts of it. The Creative Commons license does not apply to this enhanced chapter, but only to the original chapter of the thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the Landau collision kernel is semi-relativistic, in that it is valid provided that \(|\mathbf {v}\cdot \mathbf {v}^\prime |\ll c^2\), whereas Rosenbluth and Trubnikov’s differentials formulations are strictly non-relativistic, requiring \(|\mathbf {v} |^2 \ll c^2\) and, separately, \(|\mathbf {v}^\prime |^2 \ll c^2\).

  2. 2.

    As an aside, we note that Shkarofsky has rewritten the force of dynamical friction and diffusion tensor in terms of three potentials [26], which are linear combinations of the five potentials given here.

References

  1. Lindl, J.D., et al.: The physics basis for ignition using indirect-drive targets on the national ignition facility. Phys. Plasm. 11, 339 (2004)

    Article  ADS  Google Scholar 

  2. Wilks, S.C., Kruer, W.L., Tabak, M., Langdon, A.B.: Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 1383–1386 (1992)

    Article  ADS  Google Scholar 

  3. Tabak, M., et al.: Ignition and high gain with ultrapowerful lasers. Phys. Plasm. 1, 1626–1634 (1994)

    Article  ADS  Google Scholar 

  4. Karney, C.F.F., Fisch, N.J.: Efficiency of current drive by fast waves. Phys. Fluids 28, 116 (1985)

    Article  ADS  MATH  Google Scholar 

  5. Hu, Y.J., Hu, Y.M., Lin-Liu, Y.R.: Relativistic collision operators for modeling noninductive current drive by waves. Phys. Plasm. 18, 022504 (2011)

    Article  ADS  Google Scholar 

  6. Connor, J.W., Hastie, R.J.: Relativistic limitations on runaway electrons. Nucl. Fusion 15, 415 (1975)

    Article  ADS  Google Scholar 

  7. Aleynikov, P., Breizman, B.N.: Theory of two threshold fields for relativistic runaway electrons. Phys. Rev. Lett. 114, 155001–5 (2015)

    Article  ADS  Google Scholar 

  8. Stepney, S.: Two-body relaxation in relativistic thermal plasmas. Mon. Not. R. Astron. Soc. 202, 467–481 (1983)

    Article  ADS  MATH  Google Scholar 

  9. Aksenov, A., Ruffini, R., Vereshchagin, G.: Thermalization of nonequilibrium electron-positron-photon plasmas. Phys. Rev. Lett. 99, 125003 (2007)

    Article  ADS  Google Scholar 

  10. Beloborodov, A.M.: Collisional mechanism for gamma-ray burst emission. Mon. Not. R. Astron. Soc. 407, 1033–1047 (2010)

    Article  ADS  Google Scholar 

  11. Landau, L.D.: Kinetic equation for the coulomb effect. Phys. Z. Sowjetunion 10, 154 (1936)

    Google Scholar 

  12. Rosenbluth, M.N., MacDonald, W.M., Judd, D.L.: Fokker–Planck equation for an inverse-square force. Phys. Rev. 107, 1–6 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Trubnikov, B.A.: The differential form of the kinetic equation of a plasma for the case of coulomb collisions. Sov. Phys. JETP 7, 926 (1958)

    Google Scholar 

  14. Beliaev, S.T., Budker, G.I.: The relativistic kinetic equation. Sov. Phys. Dokl. 1, 218 (1956)

    ADS  Google Scholar 

  15. Braams, B.J., Karney, C.F.F.: Differential form of the collision integral for a relativistic plasma. Phys. Rev. Lett. 59, 1817–1820 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  16. Spitzer Jr., L.: Physics of Fully Ionized Gases, 2 edn. Wiley, New York (1962)

    Google Scholar 

  17. Trubnikov, B.A.: Reviews of Plasma Physics. In: Leontovich, M.A. (ed.), vol. 1, p. 105. Consultants Bureau, New York (1965)

    Google Scholar 

  18. Sivukhin, D.V.: Reviews of Plasma Physics. In: Leontovich, M.A. (ed.), vol. 4, p. 93. Consultants Bureau, New York (1966)

    Google Scholar 

  19. Frankel, N.E., Hines, K.C., Dewar, R.L.: Energy-loss due to binary collisions in a relativistic plasma. Phys. Rev. A 20, 2120–2129 (1979)

    Article  ADS  Google Scholar 

  20. Dermer, C.D.: Binary collision rates of relativistic thermal plasmas. I. Theor. Framew. Astrophys. J. 295, 28–37 (1985)

    Article  ADS  Google Scholar 

  21. Haug, E.: Energy loss and mean free path of electrons in a hot thermal plasma. Astron. Astrophys. 191, 181–185 (1988)

    ADS  MATH  Google Scholar 

  22. de Gottal, P., Gariel, J.: Test-particle motion in a relativistic plasma. Phys. A 157, 1059 (1989)

    Article  Google Scholar 

  23. Dermer, C.D., Liang, E.P.: Electron thermalization and heating in relativistic plasmas. Astrophys. J. 339, 512–528 (1989)

    Article  ADS  Google Scholar 

  24. Robiche, J., Rax, J.: Relativistic kinetic theory of pitch angle scattering, slowing down, and energy deposition in a plasma. Phys. Rev. E 70, 046405 (2004)

    Article  ADS  Google Scholar 

  25. Trubnikov, B.A.: The differential form of the kinetic equation of a plasma for the case of coulomb collisions. Sov. Phys. JETP 7, 926–927 (1958)

    Google Scholar 

  26. Shkarofsky, I.P.: Expansion of the relativistic Fokker–Planck equation including non-linear terms and a non-Maxwellian background. Phys. Plasm. 4, 2464 (1997)

    Article  ADS  Google Scholar 

  27. Braams, B.J., Karney, C.F.F.: Conductivity of a relativistic plasma. Phys. Fluids B 1, 1355 (1989)

    Article  ADS  Google Scholar 

  28. Jackson, D.J.: Classical Electrodynamics, 3 edn. Wiley, New York (1998)

    Google Scholar 

  29. Solodov, A.A., Betti, R.: Stopping power and range of energetic electrons in dense plasmas of fast-ignition fusion targets. Phys. Plasm. 15 (2008)

    Google Scholar 

  30. Haug, E.: Bremsstrahlung and pair production in the field of free electrons. Z. Naturforsch. 30, 1099–1113 (1975)

    ADS  Google Scholar 

  31. Haug, E.: Electron-electron bremsstrahlung in a hot plasma. Z. Naturforsch. 30, 1546–1552 (1975)

    ADS  Google Scholar 

  32. Stepney, S.: Relativistic thermal plasmas, Ph.D. thesis (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver James Pike .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pike, O.J. (2017). Dynamical Friction in a Relativistic Plasma. In: Particle Interactions in High-Temperature Plasmas. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63447-0_3

Download citation

Publish with us

Policies and ethics