Skip to main content

Inference on Gravitational Waves from Coalescences of Stellar-Mass Compact Objects and Intermediate-Mass Black Holes

  • Chapter
  • First Online:
Globular Cluster Binaries and Gravitational Wave Parameter Estimation

Part of the book series: Springer Theses ((Springer Theses))

  • 284 Accesses

Abstract

This chapter is adapted from a paper by Carl-Johan Haster, Zhilu Wang, Christopher P. L. Berry, Simon Stevenson, John Veitch and Ilya Mandel. My contribution to this work was to (i) design the initial parameters of this study, (ii) aid Zhilu Wang (a summer student in the group) to run the simulations, (iii) lead the post-processing and collating of the results, (iv) write the paper. This paper is published in MNRAS [23] and has arXiv number 1511.01431.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The inspiral of an IMBH into a supermassive BH is also referred to as an IMRI. GWs from such IMRIs are potential sources for a space-borne detector [8], as are the most massive (redshifted total masses of \(\gtrsim 10^3~\mathrm {M}_\odot \)) IMBHBs [17, 34].

  2. 2.

    For comparison, \(\sim \)30 coalescences of stellar-mass BH binaries originating in globular clusters could be detected per year ([46], and erratum).

  3. 3.

    The median SNR of detected signals, assuming that sources are uniformly distributed in (Euclidean) volume is \(\rho _\mathrm {med} = 2^{1/3} \rho _\mathrm {det}\), where \(\rho _\mathrm {det}\) is the detection threshold [48]. Taking a detection threshold of \(\rho _\mathrm {det} = 12\) [5], \(\rho _\mathrm {med} \simeq 15\).

  4. 4.

    The presence of non-stationary noise features (glitches) could impact PE leading to systematic errors. Realistic non-stationary, non-Gaussian noise has been shown not to affect PE performance for binary neutron stars [10]; however, these noise features could be more significant in analysing short-duration, low-frequency IMRAC signals.

  5. 5.

    A component of the LIGO Scientific Collaboration Algorithm Library (LAL) suite http://www.lsc-group.phys.uwm.edu/lal.

  6. 6.

    Veitch et al. [56] found that \(m_1 \gtrsim 130~\mathrm {M}_\odot \) was required to infer the presence of an IMBH in an IMBHB at \(95\%\) confidence.

  7. 7.

    In IMRPhenomD, IMR refers to inspiral–merger–ringdown, not intermediate mass ratio.

References

  1. Aasi, J., et al. (2013). Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 88, 062001. arXiv:1304.1775.

  2. Aasi, J., et al. (2014). Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 89(10), 102006. arXiv:1403.5306.

  3. Aasi, J., et al. (2015). Advanced LIGO. Classical and Quantum Gravity, 32, 074001. arXiv:1411.4547.

  4. Abadie, J., et al. (2010). Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 27, 173001.

    Article  ADS  Google Scholar 

  5. Abbott, B. P., et al. (2016). Prospects for observing and localizing gravitational-wave transients with advanced ligo and advanced virgo. Living Reviews in Relativity, 19, 1. arXiv:1304.0670.

  6. Acernese, F., Alshourbagy, M., & Antonucci, F., et al. (2009). Advanced virgo baseline design. Virgo Technical Report VIR-0027A-09.

    Google Scholar 

  7. Acernese, F., et al. (2015). Advanced virgo: A second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 32(2), 024001. arXiv:1408.3978.

  8. Amaro-Seoane, P., Gair, J. R., Freitag, M., Coleman Miller, M., Mandel, I., Cutler, C. J., et al. (2007). Astrophysics, detection and science applications of intermediate- and extreme mass-ratio inspirals. Classical and Quantum Gravity, 24, R113–R169. arXiv:astro-ph/0703495.

  9. Belczynski, K., Buonanno, A., Cantiello, M., Fryer, C. L., Holz, D. E., Mandel, I., et al. (2014). The formation and gravitational-wave detection of massive stellar black-hole binaries. Astrophysical Journal, 789(2), 120. arXiv:1403.0677.

  10. Berry, C. P. L., Mandel, I., Middleton, H., Singer, L. P., Urban, A. L., Vecchio, A., et al. (2015). Parameter estimation for binary neutron-star coalescences with realistic noise during the advanced LIGO Era. Astrophysical Journal, 804, 114. arXiv:1411.6934.

  11. Berti, E., Cardoso, V., & Will, C. M. (2006). On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA. Physical Review D, 73, 064030. arXiv:gr-qc/0512160.

  12. Brown, D. A., Fang, H., Gair, J. R., Li, C., Lovelace, G., Mandel, I., & Thorne, K. S. (2007). Prospects for detection of gravitational waves from intermediate-mass-ratio inspirals. Physical Review Letters, 99, 201102. arXiv:gr-qc/0612060.

  13. Buonanno, A., & Damour, T. (1999). Effective one-body approach to general relativistic two-body dynamics. Physics Review D, 59(8), 084006. arXiv:gr-qc/9811091.

  14. Buonanno, A., & Damour, T. (2000). Transition from inspiral to plunge in binary black hole coalescences. Physics Review D, 62(6), 064015. arXiv:gr-qc/0001013.

  15. Cutler, C., & Flanagan, É. E. (1994). Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral waveform? Physical Review D, 49, 2658–2697. arXiv:gr-qc/9402014.

  16. Feng, H., & Soria, R. (2011). Ultraluminous X-ray sources in the chandra and XMM-Newton Era. New Astronomy Reviews, 55, 166–183. arXiv:1109.1610.

  17. Fregeau, J. M., Larson, S. L., Miller, M. C., O’Shaughnessy, R. W., & Rasio, F. A. (2006). Observing IMBH-IMBH binary coalescences via gravitational radiation. Astrophysical Journal, 646, L135–L138. arXiv:astro-ph/0605732.

  18. Freitag, M., Rasio, F. A., & Baumgardt, H. (2006). Runaway collisions in young star clusters. 1. Methods and tests. Monthly Notices of the Royal Astronomical Society, 368, 121–140. arXiv:astro-ph/0503129.

  19. Gair, J. R., Li, C., & Mandel, I. (2008). Observable properties of orbits in exact bumpy spacetimes. Physical Review D, 77, 024035. arXiv:0708.0628.

  20. Gill, M., Trenti, M., Miller, M. C., van der Marel, R., Hamilton, D., & Stiavelli, M. (2008). Intermediate mass black hole induced quenching of mass segregation in star clusters. Astrophysical Journal, 686, 303. arXiv:0806.4187.

  21. Graff, P. B., Buonanno, A., & Sathyaprakash, B. (2015). Missing link: bayesian detection and measurement of intermediate-mass black-hole binaries. Physical Review, D92(2), 022002. arXiv:1504.04766.

  22. Graham, A. W., & Scott, N. (2013). The M\(_{BH}\)-L\(_{spheroid}\) relation at high and low masses, the quadratic growth of black holes, and intermediate-mass black hole candidates. Astrophysical Journal, 764, 151. arXiv:1211.3199.

  23. Haster, C.-J., Wang, Z., Berry, C. P. L., Stevenson, S., Veitch, J., & Mandel, I. (2016). Inference on gravitational waves from coalescences of stellar-mass compact objects and intermediate-mass black holes. MNRAS, 457, 4499–4506. arXiv:1511.01431.

  24. Healy, J., Lousto, C. O., & Zlochower, Y. (2014). Remnant mass, spin, and recoil from spin aligned black-hole binaries. Physical Review D, 90(10), 104004. arXiv:1406.7295.

  25. Hobson, M. P., Efstathiou, G., & Lasenby, A. (2006). General relativity: An introduction for physicists. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  26. Husa, S., Khan, S., Hannam, M., Pürrer, M., Ohme, F., Forteza, X. J., & Bohé, A. (2016). Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal. Physical Review D, 93(4), 044006. arXiv:1508.07250.

  27. Khan, S., Husa, S., Hannam, M., Ohme, F., Pürrer, M., Forteza, X. J., & Bohé, A. (2016). Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era. Physical Review D, 93(4), 044007. arXiv:1508.07253.

  28. Leigh, N. W. C., Lützgendorf, N., Geller, A. M., Maccarone, T. J., Heinke, C., & Sesana, A. (2014). On the coexistence of stellar-mass and intermediate-mass black holes in globular clusters. MNRAS, 444, 29–42. arXiv:1407.4459.

  29. Lousto, C. O., Nakano, H., Zlochower, Y., & Campanelli, M. (2010). Intermediate mass ratio black hole binaries: Numerical relativity meets perturbation theory. Physical Review Letters, 104, 211101. arXiv:1001.2316.

  30. MacLeod, M., Trenti, M., & Ramirez-Ruiz, E. (2016). The close stellar companions to intermediate-mass black holes. Astrophysical Journal, 819, 70. arXiv:1508.07000.

  31. Mandel, I. (2007). Spin distribution following minor mergers and the effect of spin on the detection range for low-mass-ratio inspirals. ArXiv e-prints. arXiv:0707.0711.

  32. Mandel, I., Brown, D. A., Gair, J. R., & Miller, M. C. (2008). Rates and characteristics of intermediate mass ratio inspirals detectable by advanced LIGO. Astrophysical Journal, 681, 1431–1447. arXiv:0705.0285.

  33. Mandel, I., & Gair, J. R. (2009). Can we detect intermediate mass ratio inspirals? Classical and Quantum Gravity, 26, 094036. arXiv:0811.0138.

  34. Miller, M. C. (2009). Intermediate-mass black holes as LISA sources. Classical and Quantum Gravity, 26, 094031. arXiv:0812.3028.

  35. Miller, M. C., & Colbert, E. J. M. (2004). Intermediate-mass black holes. International Journal of Modern Physics D, 13, 1–64. arXiv:astro-ph/0308402.

    Article  ADS  MATH  Google Scholar 

  36. Moore, C. J., Cole, R. H., & Berry, C. P. L. (2015). Gravitational-wave sensitivity curves. Classical and Quantum Gravity, 32(1), 015014. arXiv:1408.0740.

  37. Morscher, M., Pattabiraman, B., Rodriguez, C., Rasio, F. A., & Umbreit, S. (2015). The dynamical evolution of stellar black holes in globular clusters. Astrophysical Journal, 800, 9. arXiv:1409.0866.

  38. Mroué, A. H., Scheel, M. A., Szilágyi, B., Pfeiffer, H. P., Boyle, M., Hemberger, D. A., et al. (2013). Catalog of 174 binary black hole simulations for gravitational wave astronomy. Physical Review Letters, 111(24), 241104. arXiv:1304.6077.

  39. Pan, Y., Buonanno, A., Taracchini, A., Kidder, L. E., Mroué, A. H., Pfeiffer, H. P., et al. (2014). Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism. Physical Review D, 89(8), 084006. arXiv:1307.6232.

  40. Pasham, D. R., Strohmayer, T. E., & Mushotzky, R. F. (2015). A 400 solar mass black hole in the Ultraluminous X-ray source M82 X-1 accreting close to its Eddington limit. Nature, 513(7516), 74–76. arXiv:1501.03180.

  41. Poisson, E., Pound, A., & Vega, I. (2011). The motion of point particles in curved spacetime. Living Reviews in Relativity, 14, 7. arXiv:1102.0529.

  42. Portegies Zwart, S. F., Baumgardt, H., Hut, P., Makino, J., & McMillan, S. L. W. (2004). The formation of massive black holes through collision runaway in dense young star clusters. Nature, 428, 724. arXiv:astro-ph/0402622.

  43. Pürrer, M. (2014). Frequency domain reduced order models for gravitational waves from aligned-spin compact binaries. Classical and Quantum Gravity, 31(19), 195010. arXiv:1402.4146.

  44. Pürrer, M. (2016). Frequency domain reduced order model of aligned-spin effective-one-body waveforms with generic mass ratios and spins. Physical Review D, 93(6), 064041. arXiv:1512.02248.

  45. Rodriguez, C. L., Mandel, I., & Gair, J. R. (2012). Verifying the no-hair property of massive compact objects with intermediate-mass-ratio inspirals in advanced gravitational-wave detectors. Physical Review D, 85, 062002. arXiv:1112.1404.

  46. Rodriguez, C. L., Morscher, M., Pattabiraman, B., Chatterjee, S., Haster, C.-J., & Rasio, F. A. (2015). Binary black hole mergers from globular clusters: Implications for advanced LIGO. Physical Review Letters, 115(5), 051101. arXiv:1505.00792v3.

  47. Santamaria, L. et al. (2010). Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for non-precessing black hole binaries. Physical Review D, 82, 064016. arXiv:1005.3306.

  48. Schutz, B. F. (2011). Networks of gravitational wave detectors and three figures of merit. Classical and Quantum Gravity, 28, 125023. arXiv:1102.5421.

  49. Shoemaker, D. (2010). Advanced ligo anticipated sensitivity curves. LIGO Document LIGO-T0900288-v3.

    Google Scholar 

  50. Smith, R. J. E., Mandel, I., & Vechhio, A. (2013). Studies of waveform requirements for intermediate mass-ratio coalescence searches with advanced gravitational-wave detectors. Physical Review D, 88(4), 044010. arXiv:1302.6049.

  51. Taracchini, A., Buonanno, A., Pan, Y., Hinderer, T., Boyle, M., Hemberger, D. A., et al. (2014). Effective-one-body model for black-hole binaries with generic mass ratios and spins. Physical Review D, 89(6), 061502. arXiv:1311.2544.

  52. Taracchini, A., Pan, Y., Buonanno, A., Barausse, E., Boyle, M., Chu, T., et al. (2012). Prototype effective-one-body model for nonprecessing spinning inspiral-merger-ringdown waveforms. Physical Review D, 86, 024011. arXiv:1202.0790.

  53. Trenti, M., Ardi, E., Mineshige, S., & Hut, P. (2007). Star clusters with primordial binaries—III. Dynamical interaction between binaries and an intermediate-mass black hole. MNRAS, 374, 857–866. arXiv:astro-ph/0610342.

  54. Umbreit, S., & Rasio, F. A. (2013). Constraining intermediate-mass black holes in globular clusters. Astrophysical Journal, 768, 26. arXiv:1207.2497.

  55. Vallisneri, M. (2008). Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects. Physical Review D, 77, 042001. arXiv:gr-qc/0703086.

  56. Veitch, J., Pürrer, M., & Mandel, I. (2015a). Measuring intermediate mass black hole binaries with advanced gravitational wave detectors. Physical Review Letters, 115(14), 141101. arXiv:1503.05953.

  57. Veitch, J., Raymond, V., Farr, B., Farr, W., Graff, P., Vitale, S., et al. (2015b). Parameter estimation for compact binaries with ground-based gravitational-wave observations using the lalinference software library. Physical Review D, 91, 042003.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl-Johan Haster .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Haster, CJ. (2017). Inference on Gravitational Waves from Coalescences of Stellar-Mass Compact Objects and Intermediate-Mass Black Holes. In: Globular Cluster Binaries and Gravitational Wave Parameter Estimation. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63441-8_3

Download citation

Publish with us

Policies and ethics