Skip to main content

Pedotransfer Functions and Soil Inference Systems

  • Chapter
  • First Online:
Pedometrics

Part of the book series: Progress in Soil Science ((PROSOIL))

Abstract

The term pedotransfer function (PTF) was coined by Bouma (1989) as ‘translating data we have into what we need’. Pedotransfer functions are regression functions used to predict soil properties that would be otherwise infeasible to obtain. Typical reasons for this infeasibility include, but are not limited to, the cost, time, difficulty or hazard involved in procuring direct measurements. Each PTF is developed around some insight into a soil’s physical, chemical or biological properties that relates a set of input parameters (predictor properties) to an output parameter (a predicted property).

“You can’t make a silk purse out of a sow’s ear”.

Jonathan Swift

Anglo-Irish essayist (1667–1745)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbasi Y, Ghanbarian-Alavijeh B, Liaghat AM, Shorafa M (2011) Evaluation of pedotransfer functions for estimating soil water retention curve of saline and saline-alkali soils of Iran. Pedosphere 21(2):230–237

    Article  Google Scholar 

  • Acutis M, Donatelli M (2003) SOILPAR 2.00: software to estimate soil hydrological parameters and functions. Eur J Agron 18(3):373–377

    Article  Google Scholar 

  • Adamchuk VI, Hummel JW, Morgan MT, Upadhyaya SK (2004) On-the-go soil sensors for precision agriculture. Comput Electron Agric 44(1):71–91

    Article  Google Scholar 

  • Arya LM, Paris JF (1981) A physicoempirical model to predict soil moisture characteristics from particle size distribution and bulk density data. Soil Sci Soc Am J 45(1023):1030

    Google Scholar 

  • Baker L, Ellison D (2008a) The wisdom of crowds – ensembles and modules in environmental modelling. Geoderma 147(1):1–7

    Article  Google Scholar 

  • Baker L, Ellison D (2008b) Optimisation of pedotransfer functions using an artificial neural network ensemble method. Geoderma 144(1):212–224

    Article  Google Scholar 

  • Batjes NH (1996) Development of a world data set of soil water retention properties using pedotransfer rules. Geoderma 71:31–52

    Article  Google Scholar 

  • Bauer T, Strauss P, Murer E (2014) A photogrammetric method for calculating soil bulk density. J Plant Nutr Soil Sci 177(4):496–499

    Article  Google Scholar 

  • Bell MA, Van Keulen H (1995) Soil pedotransfer functions for four Mexican soils. Soil Sci Soc Am J 59(3):865–871

    Article  Google Scholar 

  • Bloemen GW (1980) Calculation of hydraulic conductivities of soils from texture and organic matter content. J Plant Nutr Soil Sci 143(5):581–605

    Google Scholar 

  • Boucneau G (1998) Geographical information science applied to soils of West-Flanders. PhD thesis. Faculty of Agricultural and Applied Biological Sciences. University of Ghent

    Google Scholar 

  • Bouma J (1989) Using soil survey data for quantitative land evaluation. Adv Soil Sci 9:177–213

    Article  Google Scholar 

  • Bouma J, Van Lanen HAJ (1987) Transfer functions and threshold values: from soil characteristics to land qualities

    Google Scholar 

  • Briggs LJ, McLane JW (1907) The moisture equivalent of soils. USDA Bur Soils Bull 45:1–23

    Google Scholar 

  • Briggs LJ, Shantz HL (1912) The wilting coefficient and its indirect determination. Bot Gaz 53(1):20–37

    Article  Google Scholar 

  • Bruand A, Fernandez PP, Duval O (2003) Use of class pedotransfer functions based on texture and bulk density of clods to generate water retention curves. Soil Use Manag 19(3):232–242

    Article  Google Scholar 

  • Calhoun FG, Smeck NE, Slater BL, Bigham JM, Hall GF (2001) Predicting bulk density of Ohio soils from morphology, genetic principles, and laboratory characterization data. Soil Sci Soc Am J 65:811–819

    Article  Google Scholar 

  • Canarache A, Motoc E, Dumitriu R, Rijtema P (1968) Infiltration rate as related to hydraulic conductivity, moisture deficit and other soil properties. In: Water in the unsaturated zone. Proceedings of the Wageningen symposium, vol 1, pp 392–401

    Google Scholar 

  • Chang C-W, Laird DW, Mausbach MJ, Hurburgh CR (2001) Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties. Soil Sci Soc Am J 65:480–490

    Article  Google Scholar 

  • Chen G, Yost RS, Li ZC, Wang X, Cox FR (1997) Uncertainty analysis for knowledge-based decision aids: application to PDSS (Phosphorous Decision Support System). Agric Syst 55:461–471

    Article  Google Scholar 

  • Clapp RB, Hornberger GM (1978) Empirical equations for some soil hydraulic properties. Water Resour Res 14(4):601–604

    Article  Google Scholar 

  • Clemen RT (1989) Combining forecasts: a review and annotated bibliography. Int J Forecast 5(4):559–583

    Article  Google Scholar 

  • Cox FR (1994) Current phosphorus availability indices: characteristics and shortcomings. In: Soil testing: prospects for improving nutrient recommendations, (soiltestingpros), pp 101–113

    Google Scholar 

  • Crescimanno G, Provenzano G (1999) Soil shrinkage characteristic curve in clay soils. Soil Sci Soc Am J 63:25–32

    Article  Google Scholar 

  • Curtin D, Rostad HPW (1997) Cation exchange and buffer potential of Saskatchewan soils estimated from texture, organic matter and pH. Can J Soil Sci 77(4):621–626

    Article  Google Scholar 

  • Da Silva A, Kay BD (1997) Estimating the least limiting water range of soils from properties and management. Soil Sci Soc Am J 61:877–883

    Article  Google Scholar 

  • Dai Y, Shangguan W, Duan Q, Liu B, Fu S, Niu G (2013) Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling. J Hydrometeorol 14(3):869–887

    Article  Google Scholar 

  • DeVries DA (1966) Thermal properties of soils. In: van Wijk WR (ed) Physics of plant environment, 2nd edn, pp 231–234

    Google Scholar 

  • de Wit CT, van Keulen H (1972) Simulation of transport processes in soils (No. 2, p 100) Pudoc

    Google Scholar 

  • Dickson BL, Scott KM (1997) Interpretation of aerial gamma-ray surveys: adding the geochemical factors. AGSO J Aust Geol Geophys 17(2):187–200

    Google Scholar 

  • Dimitrov M, Vanderborght J, Kostov KG, Jadoon KZ, Weihermüller L, Jackson TJ, Bindlish R, Pachepsky Y, Schwank M, Vereecken H (2014) Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from L-band brightness temperatures. Vadose Zone J 13(1)

    Article  Google Scholar 

  • Droogers P, Bouma J (1997) Soil survey input in exploratory modelling of sustainable soil management practices. Soil Sci Soc Am J 61:1704–1710

    Article  Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. In: Monographs on statistics and applied probability 57. Chapman & Hall, London

    Google Scholar 

  • Fernandez RN, Schulze DG, Coffin DL, Van Scoyoc GE (1988) Color, organic matter, and pesticide adsorption relationships in a soil landscape. Soil Sci Soc Am J 52(4):1023–1026

    Article  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103(3):626–631

    Article  Google Scholar 

  • Franzmeier DP (1991) Estimation of hydraulic conductivity from effective porosity data for some Indiana soils. Soil Sci Soc Am J 55:1801–1803

    Article  Google Scholar 

  • Ghorbani DS, Homaei M (2002) Derivation of the retention curve parameters using pedotransfer functions. J Agric Eng Res 3(12):1–16

    Google Scholar 

  • Gilkes RJ, Hughes JC (1994) Sodium fluoride pH of south-western Australian soils as an indicator of P-sorption. Aust J Soil Res 32:755–766

    Article  Google Scholar 

  • Glendining MJ, Dailey AG, Powlson DS, Richter GM, Catt JA, Whitmore AP (2011) Pedotransfer functions for estimating total soil nitrogen up to the global scale. Eur J Soil Sci 62(1):13–22

    Article  Google Scholar 

  • Gomez C, Drost APA, Roger JM (2015) Analysis of the uncertainties affecting predictions of clay contents from VNIR/SWIR hyperspectral data. Remote Sens Environ 156:58–70

    Article  Google Scholar 

  • Guber AK, Pachepsky YA, van Genuchten MT, Simunek J, Jacques D, Nemes A, Nicholson TJ, Cady RE (2009) Multimodel simulation of water flow in a field soil using pedotransfer functions. Vadose Zone J 8(1):1–10

    Article  Google Scholar 

  • Gupta S, Larson WE (1979) Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resour Res 15(6):1633–1635

    Article  Google Scholar 

  • Haghverdi A, Cornelis WM, Ghahraman B (2012) A pseudo-continuous neural network approach for developing water retention pedotransfer functions with limited data. J Hydrol 442:46–54

    Article  Google Scholar 

  • Hall DG, Reeve MJ, Thomasson AJ, Wright VF (1977) Water retention, porosity and density of field soils, Technical Monograph No. 9. Soil Survey of England and Wales, Harpenden

    Google Scholar 

  • Hartemink AE, Minasny B (2014) Towards digital soil morphometrics. Geoderma 230:305–317

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference and prediction, Springer Series in Statistics, 2nd edn. Springer-Verlag, New York

    Book  Google Scholar 

  • Henderson BL, Bui EN (2002) An improved calibration curve between soil pH measured in waterand CaCl2. Soil Res 40(8):1399–1405

    Article  Google Scholar 

  • Heuvelink GBM, Pebesma EJ (1999) Spatial aggregation and soil process modeling. Geoderma 89:47–65

    Article  Google Scholar 

  • Hollis JM, Hannam J, Bellamy PH (2012) Empirically derived pedotransfer functions for predicting bulk density in European soils. Eur J Soil Sci 63(1):96–109

    Article  Google Scholar 

  • Horta A, Malone B, Stockmann U, Minasny B, Bishop TFA, McBratney AB, Pallasser R, Pozza L (2015) Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: a prospective review. Geoderma 241:180–209

    Article  Google Scholar 

  • Hubrechts L, Feyen J (1996) Pedotransfer functions for thermal soil properties. Institute for Land and Water Management. Katholieke University, Leuven

    Google Scholar 

  • Jones CA (1984) Estimation of percent aluminum saturation from soil chemical data 1. Commun Soil Sci Plant Anal 15(3):327–335

    Article  Google Scholar 

  • Kim S, Parinussa RM, Liu YY, Johnson FM, Sharma A (2015) A framework for combining multiple soil moisture retrievals based on maximizing temporal correlation. Geophys Res Lett 42(16):6662–6670

    Article  Google Scholar 

  • Kleinman PJ, Bryant RB, Reid WS (1999) Development of pedotransfer functions to quantify phosphorus saturation of agricultural soils. J Environ Qual 28(6):2026–2030

    Article  Google Scholar 

  • Lamp J, Kneib W (1981) Zur quantitativen Erfassung und Bewertung von Pedofunktionen. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 32:695–711

    Google Scholar 

  • Lark RM (2001) Some tools for parsimonious modelling and interpretation of within-field variation of soil and crop systems. Soil Tillage Res 58:99–111

    Article  Google Scholar 

  • Lawrence I, Lin K (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics:255–268

    Google Scholar 

  • Lin HS, McInnes KJ, Wilding LP, Hallmark CT (1999) Effects of soil morphology on hydraulic properties: I. Quantification of soil morphology. Soil Sci Soc Am J 63:948–954

    Article  Google Scholar 

  • Malone BP, Minasny B, Odgers NP, McBratney AB (2014) Using model averaging to combine soil property rasters from legacy soil maps and from point data. Geoderma 232:34–44

    Article  Google Scholar 

  • Martens G, Naes T (1989) Multivariate calibration. Wiley, New York

    Google Scholar 

  • Mayr T, Jarvis NJ (1999) Pedotransfer functions to estimate soil water retention parameters for a modified Brooks–Corey type model. Geoderma 91(1):1–9

    Article  Google Scholar 

  • McBratney AB, Minasny B, Cattle SR, Vervoort RW (2002) From pedotransfer function to soil inference system. Geoderma 109:41–73

    Article  Google Scholar 

  • Mbagwu JSC, Abeh OG (1998) Prediction of engineering properties of tropical soils using intrinsic pedological parameters. Soil Sci 163(2):93–102

    Article  Google Scholar 

  • McBratney AB, Minasny B, Viscarra Rossel R (2006) Spectral soil analysis and inference systems: a powerful combination for solving the soil data crisis. Geoderma 136(1–2):272–278

    Article  Google Scholar 

  • McBratney AB, Minasny B, Tranter G (2011a) Necessary meta-data for pedotransfer functions. Geoderma 160(3):627–629

    Article  Google Scholar 

  • McBratney AB, Minasny B, Whelan BM (2011b) Defining proximal soil sensing. 2nd Global workshop – proximal soil sensing. Montreal, Canada

    Google Scholar 

  • McBride RA, Joosse PJ (1996) Overconsolidation in agricultural soils: II. Pedotransfer functions for estimating preconsolidation stress. Soil Sci Soc Am J 60(2):373–380

    Article  Google Scholar 

  • McKeague JA, Wang C, Topp GC (1982) Estimating saturated hydraulic conductivity from soil morphology. Soil Sci Soc Am J 46:1239–1244

    Article  Google Scholar 

  • McKeague JA, Eilers RG, Thomasson AJ, Reeve MJ, Bouma J, Grossman RB, Favrot JC, Renger M, Strebel O (1984) Tentative assessment of soil survey approaches to the characterization and interpretation of air-water properties of soils. Geoderma 34(1):69–100

    Article  Google Scholar 

  • McKenzie NJ, Jacquier DW (1997) Improving the field estimation of saturated hydraulic conductivity in soil survey. Aust J Soil Res 35:803–825

    Article  Google Scholar 

  • McKenzie NJ, MacLeod DA (1989) Relationships between soil morphology and soil properties relevant to irrigated and dryland agriculture. Aust J Soil Res 27:235–258

    Article  Google Scholar 

  • McKenzie NJ, Smettem KRJ, Ringrose-Voase AJ (1991) Evaluation of methods for inferring air and water properties of soils from field morphology. Aust J Soil Res 29:587–602

    Article  Google Scholar 

  • Minasny B, McBratney AB (2000) Evaluation and development of hydraulic conductivity pedotransfer functions for Australian soil. Aust J Soil Res 38:905–926

    Article  Google Scholar 

  • Minasny B, McBratney AB (2008) Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy. Chemom Intell Lab Syst 94(1):72–79

    Article  Google Scholar 

  • Mirreh HF, Ketcheson JW (1972) Influence of soil bulk density and matric pressure on soil resistance to penetration. Can J Soil Sci 52(3):477–483

    Article  Google Scholar 

  • Moldrup P, Olesen T, Gamst J, Schjønning P, Yamaguchi T, Rolston DE (2000) Predicting the gas diffusion coefficient in repacked soil water-induced linear reduction model. Soil Sci Soc Am J 64(5):1588–1594

    Article  Google Scholar 

  • Morris J (2016) General method for predicting soil data via pattern matching on pedotransfer functions. University of Sydney, Faculty of Agriculture and Environment. http://hdl.handle.net/2123/14575

  • Mulder VL, De Bruin S, Schaepman ME, Mayr TR (2011) The use of remote sensing in soil and terrain mapping – a review. Geoderma 162(1):1–19

    Article  Google Scholar 

  • Mulder VL, Plötze M, de Bruin S, Schaepman ME, Mavris C, Kokaly RF, Egli M (2013) Quantifying mineral abundances of complex mixtures by coupling spectral deconvolution of SWIR spectra (2.1–2.4 μm) and regression tree analysis. Geoderma 207:279–290

    Article  Google Scholar 

  • Nanko K, Ugawa S, Hashimoto S, Imaya A, Kobayashi M, Sakai H, Ishizuka S, Miura S, Tanaka N, Takahashi M, Kaneko S (2014) A pedotransfer function for estimating bulk density of forest soil in Japan affected by volcanic ash. Geoderma 213:36–45

    Article  Google Scholar 

  • Nemes A, Rawls WJ, Pachepsky YA (2006) Use of the nonparametric nearest neighbor approach to estimate soil hydraulic properties. Soil Sci Soc Am J 70(2):327–336

    Article  Google Scholar 

  • Nielsen DR, Shaw RH (1958) Estimation of the 15-atmosphere moisture percentage from hydrometer data. Soil Sci 86(2):103–105

    Article  Google Scholar 

  • O’Neal AM (1949) Some characteristics significant in evaluating permeability. Soil Sci 67:403–409

    Article  Google Scholar 

  • O’Neal AM (1952) A key for evaluating soil permeability by means of certain field clues. Soil Sci Soc Am Proc 16:312–315

    Article  Google Scholar 

  • Pachepsky YA, Rawls WJ (1999) Accuracy and reliability of pedotransfer functions as affected by grouping soils. Soil Sci Soc Am J 63:1748–1756

    Article  Google Scholar 

  • Pachepsky YA, Timlin DJ, Ahuja LR (1999) The current status of pedotransfer functions: their accuracy, reliability and utility in field- and regional-scale modeling. In: Corwin DL, Loage K, Ellsworth TR (eds) Assessment of non-point source pollution in vadose zone, Geophysical Monograph, vol 108. American Geophysical Union, Washington, DC, pp 223–234

    Chapter  Google Scholar 

  • Pachepsky YA, Timlin DJ, Rawls WJ (2001) Soil water retention as related to topographic variables. Soil Sci Soc Am J 65:1787–1795

    Article  Google Scholar 

  • Pachepsky YA, Rajkai K, Tóth B (2015) Pedotransfer in soil physics: trends and outlook—A review—. Agrokém Talajt 64(2):339–360

    Article  Google Scholar 

  • Padarian J, Minasny B, McBratney A (2012) Using genetic programming to transform from Australian to USDA/FAO soil particle-size classification system. Soil Res 50(6):443–446

    Article  Google Scholar 

  • Padarian J, Minasny B, McBratney AB, Dalgliesh N (2014) Predicting and mapping the soil available water capacity of Australian wheatbelt. Geoderma Reg 2:110–118

    Article  Google Scholar 

  • Pringle MJ, Romano N, Minasny B, Chirico GB, Lark RM (2007) Spatial evaluation of pedotransfer functions using wavelet analysis. J Hydrol 333(2):182–198

    Article  Google Scholar 

  • Rasiah V (1995) Comparison of pedotransfer functions to predict nitrogen mineralization parameters of one and two pool models. Commun Soil Sci Plant Anal 26(11–12):1873–1884

    Article  Google Scholar 

  • Rasiah V, Kay BD (1994) Characterizing changes in aggregate stability subsequent to introduction of forages. Soil Sci Soc Am J 58(3):935–942

    Article  Google Scholar 

  • Rawls WJ, Pachepsky YA (2002) Using field topographic descriptors to estimate soil water retention. Soil Sci 167:423–435

    Article  Google Scholar 

  • Romano N, Palladino M (2002) Prediction of soil water retention using soil physical data and terrain attributes. J Hydrol 265:56–75

    Article  Google Scholar 

  • Rossi AM, Hirmas DR, Graham RC, Sternberg PD (2008) Bulk density determination by automated three-dimensional laser scanning. Soil Sci Soc Am J 72(6):1591–1593

    Article  Google Scholar 

  • Salter PJ, Williams JB (1965a) The influence of texture on the moisture characteristics of soils: I. A critical comparison for determining the available water capacity and moisture characteristics curve of a soil. J Soil Sci 16:1–15

    Article  Google Scholar 

  • Salter PJ, Williams JB (1965b) The influence of texture on the moisture characteristics of soils: II. Available water capacity and moisture release characteristics. J Soil Sci 16:310–317

    Article  Google Scholar 

  • Salter PJ, Berry G, Williams JB (1966) The influence of texture on the moisture characteristics of soils: III. Quantitative relationships between particle size, composition and available water capacity. J Soil Sci 17:93–98

    Article  Google Scholar 

  • Salter PJ, Williams JB (1967) The influence of texture on the moisture characteristics of soils: IV. A method of estimating available water capacities of profiles in the field. J Soil Sci 18:174–181

    Article  Google Scholar 

  • Salter PJ, Williams JB (1969) The influence of texture on the moisture characteristics of soils: V. Relationships between particle-size composition and moisture contents at the upper and lower limits of available water. J Soil Sci 20:126–131

    Article  Google Scholar 

  • Santra P, Das BS (2008) Pedotransfer functions for soil hydraulic properties developed from a hilly watershed of Eastern India. Geoderma 146(3):439–448

    Article  Google Scholar 

  • Sarathjith MC, Das BS, Wani SP, Sahrawat KL (2016) Variable indicators for optimum wavelength selection in diffuse reflectance spectroscopy of soils. Geoderma 267:1–9

    Article  Google Scholar 

  • Scheinost AC, Sinowski W, Auerswald K (1997a) Regionalization of soil buffering functions: a new concept applied to K/Ca exchange curves. Adv GeoEcol 30:23–38

    Google Scholar 

  • Scheinost AC, Sinowski W, Auerswald K (1997b) Regionalization of soil water retention curves in a highly variable soilscape, I. Developing a new pedotransfer function. Geoderma 78:129–143

    Article  Google Scholar 

  • Schug B, Hoß T, Düring RA, Gäth S (1999) Regionalization of sorption capacities for arsenic and cadmium. Plant Soil 213(1-2):181–187

    Article  Google Scholar 

  • Selle B, Huwe B (2005) Optimising soil-hydrological predictions using effective CART models. Adv Geosci 5:37–41

    Article  Google Scholar 

  • Sinowski W, Scheinost AC, Auerswald K (1997) Regionalization of soil water retention curves in a highly variable soilscape, II. Comparison of regionalization procedures using a pedotransfer function. Geoderma 78:145–159

    Article  Google Scholar 

  • Soriano-Disla JM, Janik LJ, Viscarra Rossel RA, Macdonald LM, McLaughlin MJ (2014) The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Appl Spectrosc Rev 49(2):139–186

    Article  Google Scholar 

  • Springer EP, Cundy TW (1987) Field-scale evaluation of infiltration parameters from soil texture for hydrologic analysis. Water Resour Res 23:325–334

    Article  Google Scholar 

  • Springob G, Böttcher J (1998) Parameterization and regionalization of Cd sorption characteristics of sandy soils.II. Regionalization: Freundlich k estimates by pedotransfer functions. J Plant Nutr Soil Sci 161(6):689–696

    Google Scholar 

  • Stenberg B, Rossel RAV, Mouazen AM, Wetterlind J (2010) Chapter five-visible and near infrared spectroscopy in soil science. Adv Agron 107:163–215

    Article  Google Scholar 

  • Tietje O, Hennings V (1996) Accuracy of the saturated hydraulic conductivity prediction by pedo-transfer functions compared to the variability within FAO textural classes. Geoderma 69:71–84

    Article  Google Scholar 

  • Torrent J, Schwertmann U, Fechter H, Alferez F (1983) Quantitative relationships between soil color and hematite content. Soil Sci 136(6):354–358

    Article  Google Scholar 

  • Torri D, Poesen J, Borselli L (1997) Predictability and uncertainty of the soil erodibility factor using a global dataset. Catena 31(1):1–22

    Article  Google Scholar 

  • Tóth B, Weynants M, Nemes A, Makó A, Bilas G, Tóth G (2015) New generation of hydraulic pedotransfer functions for Europe. Eur J Soil Sci 66(1):226–238

    Article  Google Scholar 

  • Tranter G, Minasny B, McBratney AB, Viscarra Rossel R, Murphy B (2008) Comparing spectral soil inference systems and mid-infrared spectroscopy predictions of soil volumetric moisture retention. Soil Sci Soc Am J 72:1394–1400

    Article  Google Scholar 

  • Tranter G, McBratney AB, Minasny B (2009) Using distance metrics to determine the appropriate domain of pedotransfer function predictions. Geoderma 149(3):421–425

    Article  Google Scholar 

  • Tranter G, Minasny B, McBratney AB (2010) Estimating pedotransfer function prediction limits using fuzzy-means with extragrades. Soil Sci Soc Am J 74(6):1967–1975

    Article  Google Scholar 

  • Twarakavi NK, Šimůnek J, Schaap MG (2009) Development of pedotransfer functions for estimation of soil hydraulic parameters using support vector machines. Soil Sci Soc Am J 73(5):1443–1452

    Article  Google Scholar 

  • Van de Genachte G, Mallants D, Ramos J, Deckers JA, Feyen J (1996) Estimating infiltration parameters from basic soil properties. Hydrol Process 10(5):687–701

    Article  Google Scholar 

  • Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  • Veihmeyer FJ, Hendrickson AH (1927) Soil-moisture conditions in relation to plant growth. Plant Physiol 2(1):71

    Article  Google Scholar 

  • Vereecken H, Herbst M (2004) Statistical regression. Dev Soil Sci 30:3–19

    Google Scholar 

  • Viscarra Rossel RA, McBratney AB, Minasny B (2010) Proximal soil sensing. Progress in soil science. Springer, Dordrecht

    Book  Google Scholar 

  • Weihermueller L, Graf A, Herbst M, Vereecken H (2013) Simple pedotransfer functions to initialize reactive carbon pools of the RothC model. Eur J Soil Sci 64(5):567–575

    Article  Google Scholar 

  • Weindorf DC, Zhu Y, McDaniel P, Valerio M, Lynn L, Michaelson G, Clark M, Ping CL (2012) Characterizing soils via portable x-ray fluorescence spectrometer: 2. Spodic and albic horizons. Geoderma 189–190:268–277

    Article  Google Scholar 

  • Wessolek G, Duijnisveld WHM, Trinks S (2008) Hydro-pedotransfer functions (HPTFs) for predicting annual percolation rate on a regional scale. J Hydrol 356(1):17–27

    Article  Google Scholar 

  • Weynants M, Vereecken H, Javaux M (2009) Revisiting Vereecken pedotransfer functions: introducing a closed-form hydraulic model. Vadose Zone J 8(1):86–95

    Article  Google Scholar 

  • Wildung RE, Garland TR, Buschbom RL (1975) The interdependent effects of soil temperature and water content on soil respiration rate and plant root decomposition in arid grassland soils. Soil Biol Biochem 7(6):373–378

    Article  Google Scholar 

  • Williams J, Prebble JE, Williams WT, Hignett CT (1983) The influence of texture, structure and clay mineralogy on the soil moisture characteristic. Aust J Soil Res 21:15–32

    Article  Google Scholar 

  • Wong MTF, Wittwer K, Oliver YM, Robertson MJ (2010) Use of EM38 and gamma ray spectrometry as complementary sensors for high-resolution soil property mapping. In: Viscarra Rossel RA, McBratney AB, Minasny B (eds) Proximal soil sensing. Springer, Dordrecht, pp 343–349

    Chapter  Google Scholar 

  • Wong MTF, Webb MJ, Wittwer K (2013) Development of buffer methods and evaluation of pedotransfer functions to estimate pH buffer capacity of highly weathered soils. Soil Use Manag 29(1):30–38

    Article  Google Scholar 

  • Wösten JHM, Bannink MH, De Gruijter JJ, Bouma J (1986) A procedure to identify different groups of hydraulic conductivity and moisture retention curves for soil horizons. J Hydrol 86:133–145

    Article  Google Scholar 

  • Wösten JHM, Lilly A, Nemes A, Le Bas C (1999) Development and use of a database of hydraulic properties of European soils. Geoderma 90(3):169–185

    Article  Google Scholar 

  • Wösten JHM, Finke PA, Jansen MJW (1995) Comparison of class and continuous pedotransfer functions to generate soil hydraulic characteristics. Geoderma 66:227–237

    Article  Google Scholar 

  • Wösten JHM, Pachepsky YA, Rawls WJ (2001) Pedotransfer functions: bridging gap betwen available basic soil data and missing soil hydraulic characteristics. J Hydrol 251:123–150

    Article  Google Scholar 

  • Yi X, Li G, Yin Y (2013) Comparison of three methods to develop pedotransfer functions for the saturated water content and field water capacity in permafrost region. Cold Reg Sci Technol 88:10–16

    Article  Google Scholar 

  • Zeiliguer AM, Pachepsky YA, Rawls WJ (2000) Estimating water retention of sandy soils using the additivity hypothesis. Soil Sci 165:373–383

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Padarian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Padarian, J., Morris, J., Minasny, B., McBratney, A.B. (2018). Pedotransfer Functions and Soil Inference Systems. In: McBratney, A., Minasny, B., Stockmann, U. (eds) Pedometrics. Progress in Soil Science. Springer, Cham. https://doi.org/10.1007/978-3-319-63439-5_7

Download citation

Publish with us

Policies and ethics