Skip to main content

Scaling Characteristics of Soil Structure

  • Chapter
  • First Online:
Pedometrics

Abstract

As previously discussed in Chap. 5, soil structure is defined by the spatial arrangement of soil primary particles and aggregates. There is increasing evidence that quantitative characterization of the soil structure and of its heterogeneity and complexity holds the key to a deeper understanding on physical, chemical, and biological processes that take place within them (Vogel 2000; Rockhold et al. 2004; Young et al. 2008; Blair et al. 2007; Pajor et al. 2010; Kravchenko et al. 2010; Dullien 2012).Therefore, it is very important to obtain an accurate description of it which best approximates to reality. Although many parameters may be used to attempt to describe irregular morphology, the spatial arrangement of the most prominent features is a challenging problem across a wide range of disciplines (Ripley 1988; Griffith 1988; Baveye and Boast 1988).

“For a complex natural shape, dimension is relative. It varies with the observer. The same object can have more than one dimension, depending on how you measure it and what you want to do with it. And dimension need not be a whole number; it can be fractional. Now an ancient concept, dimension, becomes thoroughly modern”.

Benoît B. Mandelbrot, The (Mis)Behaviour of Markets (2004)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allain C, Cloitre M (1991) Characterizing the lacunarity of random and deterministic fractal sets. Phys Rev A 44:3552–3558

    Article  Google Scholar 

  • Anderson AN, McBratney AB (1995) Soil aggregates as mass fractals. Aust J Soil Res 33:757–772

    Article  Google Scholar 

  • Anderson SH, Gantzer CJ, Boone JM, Tully RJ (1988) Rapid nondestructive bulk density and soil-water content determination by computed tomography. Soil Sci Soc A J 52:35–40

    Article  Google Scholar 

  • Anderson SH, Wang H, Peyton RL, Gantzer CJ (2003) Estimation of porosity and hydraulic conductivity from x-ray CT-measured solute breakthrough. In: Mees et al (eds) Applications of X-ray computed tomography in the geosciences, Geological Society of London Special Publications 222. Geological Society of London, London, pp 135–149

    Google Scholar 

  • Baveye P, Boast CW (1998) Fractal geometry, fragmentation processes and the physics of scale-invariance: an introduction. In: Parlange B, Stewart (eds) Fractals in soil science. CRC Press, Boca Raton

    Google Scholar 

  • Andraud C, Beghdadi A, Lafait J (1994) Entropic analysis of random morphologies. Physica A 207:208–217

    Article  Google Scholar 

  • Andraud C, Beghdadi A, Haslund E, Hilfer R, Lafait J, Virgin B (1997) Local entropy characterization of correlated random microstructures. Physica A 235:307–318

    Article  Google Scholar 

  • Barnsley MF, Devaney RL, Mandelbrot BB, Peitgen HO, Saupe D, Voss RF (1988) In: Peitgen HO, Saupe D (eds) The science of fractal images. Springer, New York

    Chapter  Google Scholar 

  • Bartoli F, Bird NR, Gomendy V, Vivier H, Niquet S (1999) The relation between silty soil structures and their mercury porosimetry curve counterparts: fractals and percolation. Eur J Soil Sci 50: 9–17

    Article  Google Scholar 

  • Beghdadi A, Andraud C, Lafait J, Peiro J, Perreau M (1993) Entropic and multifractal analysis of disordered morphologies. Fractals 3:671

    Article  Google Scholar 

  • Behzad G-A, Millan H, Huang G (2011) A review of fractal, prefractal and pore-solid-fractal models for parameterizing the soil water retention curve. Can J Soil Sci 91:1–14

    Article  Google Scholar 

  • Bird N, Perrier E, Rieu M (2000) The water retention curve for a model of soil structure with pore and solid fractal distributions. Eur J Soil Sci 55:55–63

    Article  Google Scholar 

  • Bird N, Díaz MC, Saa A, Tarquis AM (2006) A review of fractal and multifractal analysis of soil pore-scale images. J Hydrol 322:211–219

    Article  Google Scholar 

  • Blair J, Falconer RE, Milne A, Young IM, Crawford JW (2007) Modeling three-dimensional microstructure in heterogeneous media. Soil Sci Soc Am J 71:1807–1812

    Article  Google Scholar 

  • Bouabid R, Nater EA, Barak P (1992) Measurement of pore size distribution in a lamellar Bt horizon using epifluorescence microscopy and image analysis. Geoderma 53(3–4):309–328

    Article  Google Scholar 

  • Brakensiek DL, Rawls WJ, Logsdon SD, Edwards WM (1992) Fractal description of macroporosity. Soil Sci Soc Am J 56:1721–1723

    Article  Google Scholar 

  • Buczkowski S, Kyriacos S, Nekka F, Cartilier L (1988) The modified box-counting method: Analysis of some characteristic parameters. Pattern Recogn 31(4):411–418

    Article  Google Scholar 

  • Bullock P, Murphy CP (1980) Towards the quantification of soil structure. J Microsc 120(3): 317–328

    Article  Google Scholar 

  • Cheng Q (1997a) Discrete multifractals. Math Geol 29(2):245–266

    Article  Google Scholar 

  • Cheng Q (1997b) Multifractal modeling and lacunarity analysis. Math Geol 29(7):919–932

    Article  Google Scholar 

  • Cheng Q (1999a) The gliding box method for multifractal modeling. Comput Geosci 25: 1073–1079

    Article  Google Scholar 

  • Cheng Q (1999b) Multifractality and spatial statistics. Comput Geosci 25(9):949–961

    Article  Google Scholar 

  • Cheng Q (2001) Singularity analysis for image processing and anomaly enhancement. Annual Conference of the International Association for Mathematical Geology, Cancún

    Google Scholar 

  • Cheng Q (2007) Multifractal imaging filtering and decomposition methods in space, Fourier frequency, and eigen domains. Nonlin Process Geophys 14:293–303

    Article  Google Scholar 

  • Cheng Q, Agterberg FP, Ballantyne SB (1994) The separation of geochemical anomalies from background by fractal methods. J Geochem Explor 51:109–130

    Article  Google Scholar 

  • Chhabra A, Jensen RV (1989) Direct determination of the f(α) singularity spectrum. Phys Rev Lett (12):62, 1327–1330

    Article  Google Scholar 

  • Chun HC, Giménez D, Yoon SW (2008) Morphology, lacunarity and entropy of intra-aggregate pores: aggregate size and soil management effects. Geoderma 146(1):83–93

    Article  Google Scholar 

  • Cortina-Januchs MG, Quintanilla-Dominguez J, Vega-Corona A, Tarquis AM, Andina D (2011) Detection of pore space in CT soil images using artificial neural networks. Biogeosciences 8(2):279–288

    Article  Google Scholar 

  • Crawford JW, Matsui N (1996) Heterogeneity of the pore and solid volume of soil: distinguishing a fractal space from its non-fractal complement. Geoderma 73:183–195

    Article  Google Scholar 

  • Crawford JW, Matsui N, Young IM (1995) The relation between the moisture-release curve and the structure of soil. Eur J Soil Sci 46:369–375

    Article  Google Scholar 

  • Cumbrera R, Tarquis AM, Gascó G, Millán H (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of vertisol pit images. J Hydrol 452–453:205–212

    Article  Google Scholar 

  • Dathe A, Thulner M (2005) The relationship between fractal properties of solid matrix and pore space in porous media. Geoderma 129:279–290

    Article  Google Scholar 

  • Dathe A, Eins S, Niemeyer J, Gerold G (2001) The surface fractal dimension of the soil-pore interface as measured by image analysis. Geoderma 103:203–229

    Article  Google Scholar 

  • Dathe A, Tarquis AM, Perrier E (2006) Multifractal analysis of the pore-and solid-phases in binary two-dimensional images of natural porous structures. Geoderma 134(3):318–326

    Article  Google Scholar 

  • Dullien FAL (1992) Porous media: fluid transport and pore structure, 3rd edn. Academic, San Diego

    Google Scholar 

  • Dullien FAL (2012) Porous media: fluid transport and pore structure, 2nd edn. Academic Press Inc, pp 574

    Google Scholar 

  • Elliot TR, Heck RJ (2007a) A comparison of optical and CT techniques for void analysis in soil thin sections. Geoderma 141:60–70

    Article  Google Scholar 

  • Elliot TR, Heck RJ (2007b) A comparison of 2D and 3D thresholding of CT imagery. Can J Soil Sci 87(4):405–412

    Article  Google Scholar 

  • Evertsz CJG, Mandelbrot BB (1992) In: Peitgen H, Jurgens H, Saupe D (eds) Chaos and fractals: new frontiers of science. Springer, New York, p 921

    Google Scholar 

  • Falconer K (2003) Fractal geometry. Mathematical foundations and applications, 2nd edn. Wiley, West Sussex

    Book  Google Scholar 

  • Fallico C, Tarquis AM, De Bartoloa S, Veltria M (2010) Scaling analysis of water retention curves for unsaturated sandy loam soils by using fractal geometry. EurJ Soil Sci 61:425–436

    Article  Google Scholar 

  • Favretto S (2008) Applications of X-ray computed microtomography to material science: devices and perspectives. Ph.D. thesis. Universit degli studi di Trieste

    Google Scholar 

  • Feder J (1989) Fractals. Plenum Press, New York

    Google Scholar 

  • Fies JC, Bruand A (1990) Textural porosity analysis of a silty clay soil using pore volume balance estimation, mercury porosimetry and quantified backscattered electron scanning image (BESI). Geoderma 47:209–219

    Article  Google Scholar 

  • Gantzer CJ, Anderson SH (2002) Computed tomographic measurement of macroporosity in chisel-disk and no-tillage seedbeds. Soil Till Res 64:101–111

    Article  Google Scholar 

  • Gefen Y, Meir Y, Mandelbrot BB, Aharony A (1983) Geometric implementation of hypercubic lattices with noninteger dimensionality by use of low lacunarity fractal lattices. Phys Rev Lett 50(3):145–148

    Article  Google Scholar 

  • Geyger E, Beckmann W (1967) Apparate und methoden der mikromorphometrishen strukturanalyse des bodens. In: Kubiena WL (ed) Die Mikromorphometrishen Bodenanalyse. Ferdinand Enke, Stuttgart, pp 36–57

    Google Scholar 

  • Ghanbarian-Alavijeh B, Millán H, Huang G (2011) A review of fractal, prefractal and pore-solid-fractal models for parameterizing the soil water retention curve. Can J Soil Sci 91(1):1–14

    Article  Google Scholar 

  • Gibson JR, Lin H, Bruns MA (2006) A comparison of fractal analytical methods on 2- and 3-dimensional computed tomographic scans of soil aggregates. Geoderma 134:335–348

    Article  Google Scholar 

  • Giménez D, Allmaras RR, Nater EA, Huggins DR (1997) Fractal dimensions for volume and surface of interaggregate pores - scale effects. Geoderma 77:19–38

    Article  Google Scholar 

  • Giménez D, Allmaras RR, Huggins DR, Nater EA (1998) Mass, surface and fragmentation fractal dimensions of soil fragments produced by tillage. Geoderma 86:261–278

    Article  Google Scholar 

  • Grau J, Médez V, Tarquis AM, Saa A, Díaz MC (2006) Comparison of gliding box and box-counting methods in soil image analysis. Geoderma 134:349–359

    Article  Google Scholar 

  • Grevers MCJ, de Jong E (1994) Evaluation of soil-pore continuity using geostatistical analysis on macroporosity in serial sections obtained by computed tomography scanning. In: Anderson, Hopmans (eds) Tomography of soil-water-root processes. SSSA, Madison, pp 73–86. SSSA Special Bub. 36

    Google Scholar 

  • Griffith DA (1988) Advanced spatial statistics. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  • Hapca SM, Houston AN, Otten W, Baveye PC (2013) New objective segmentation method based on minimizing locally the intra-class variance of grayscale images. Vadose Zone J 12(3)

    Google Scholar 

  • Hentschel HGE, Procaccia I (1983) The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8:435–444

    Article  Google Scholar 

  • Horgan GW (1998) Mathematical morphology for analysing soil structure from images. Eur J Soil Sci 49:161–173

    Article  Google Scholar 

  • Houston AN, Otten W, Baveye PC, Hapca SM (2013a) Adaptive-window indicator kriging: a thresholding method for computed tomography. Comput Geosci 54:239–248

    Article  Google Scholar 

  • Houston AN, Schmidt S, Tarquis AM, Otten W, Baveye PC, Hapca SM (2013b) Effect of scanning and image reconstruction settings in X-ray computed microtomography on quality and segmentation of 3D soil images. Geoderma 207:154–165

    Article  Google Scholar 

  • Ismail SNA (1975) Micromorphometric soil-porosity characterization by means of electro – optical image analysis (Quantimet 720), Soil Survey Papers No. 9. Neth Soil Survey Inst, Wageningen. 104 pp

    Google Scholar 

  • Jongerius A, Schoonderbeek D, Jager A, Kowalinski S (1972) Electro-optical soil porosity investigation by means of Quantimet-B equipment. Geoderma 7(3–4):177–198

    Article  Google Scholar 

  • Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray level picture thresholding using the entropy of the histogram. Comp Vision Graph Image Process 29:273–285

    Article  Google Scholar 

  • Karperien A (2013) FracLac for ImageJ (1999–2013) http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm

  • Kerscher M, Mecke K, Schuecker P, Böhringer H, Guzzo L, Collins CA, Schindler S, De Grandi S, Cruddace R (2001) Non-Gaussian morphology on large scales: Minkowski functionals of the REFLEX cluster catalogue. Astron Astrophys 377:1–16

    Article  Google Scholar 

  • Kravchenko AN, Martin MA, Smucker AJM, Rivers ML (2009) Limitations in determining multifractal spectra from pore–solid soil aggregate images. Vadose Zone J 8(1):220–226

    Article  Google Scholar 

  • Kravchenko A, Falconer R, Grinev D, Otten W (2010) Fungal colonization in soils of contrasting managements: modelling fungal growth in 3D pore volumes of undisturbed soil samples. Ecol Appl 21:1202–1210

    Article  Google Scholar 

  • Larkin TJ, Canuto HC, Kettunen MI, Booth TC, Hu D-E, Krishnan AS, Bohndiek SE, Neves AA, Charles ML, Hobson MP, Brindle KM (2014) Analysis of image heterogeneity using 2D Minkowski functionals detects tumor responses to treatment. Magn Reson Med 71(1):402–410

    Article  Google Scholar 

  • Lehmann P (2005) Pore structures: measurement, characterization and relevance for flow and transport in soils. Proc Appl Math Mech 5:39–42

    Article  Google Scholar 

  • Lehmann P, Wyss P, Flisch A, Lehmann E, Vontobel P, Krafczyk M, Kaestner A, Beckmann F, Gygi A, Fluhler H (2006) Tomographical imaging and mathematical description of porous media used for the prediction of fluid distribution. Vadose Zone J 5(1):80–97

    Article  Google Scholar 

  • Li CH, Lee CK (1993) Minimum cross entropy thresholding. Pattern Recogn 26(4):617–625

    Article  Google Scholar 

  • Liu Y, Xia Q, Cheng Q, Wang X (2013) Application of singularity theory and logistic regression model for tungsten polymetallic potential mapping. Nonlinear Process Geophys 20:445–453

    Article  Google Scholar 

  • Lovejoy S, Tarquis A, Gaonac'h H, Schertzer D (2008) Single-and multiscale remote sensing techniques, multifractals, and modis-derived vegetation and soil moisture. Vadose Zone J 7:533–546

    Article  Google Scholar 

  • Luo L, Lin H (2009) Lacunarity and fractal analyses of soil macropores and preferential transport using micro-X-ray computed tomography. Vadose Zone J 8:233–241

    Article  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. Macmillan Ed

    Google Scholar 

  • Martín-Sotoca JJ, Saa-Requejo A, Grau JB, Tarquis AM (2017) New segmentation method based on fractal properties using singularity maps. Geoderma 287:40–53

    Article  Google Scholar 

  • McBratney AB, Moran CJ (1990) A rapid method of analysis for macropore structure: 2 Stereological model, statistical analysis, and interpretation. Soil Sci Soc Am J 54:509–522

    Article  Google Scholar 

  • McBratney AB, Moran CJ, Stewart JB, Cattle SR, Koppi AJ (1992) Modifications to a method of rapid assessment of soil macropore structure by image analysis. Geoderma 53(3–4):255–274

    Article  Google Scholar 

  • Mecke K (1998) Integral geometry and statistical physics. Int J Mod Phys B 12(9):861–899

    Article  Google Scholar 

  • Mecke K, Arns CH (2005) Fluids in porous media: a morphometric approach. J Phys Condens Matter 17:S503–S534

    Article  Google Scholar 

  • Michielsen K, De Raedt H (2001) Integral-geometry morphological image analysis. Phys Rep 347:461–538

    Article  Google Scholar 

  • Moran CJ (1994) Image processing and soil micromorphology. In: Ringrose-Voase AJ, Humphreys GS (eds) Soil micromorphology: studies in management and genesis, Roc. M Int. Working Meeting onSoil Micromorphology, Townsville, Australia, July 1992. Developments in Soil Science 22. Elsevier, Amsterdam, pp 459–482

    Google Scholar 

  • Moran CJ, McBratney AB (1992a) Acquisition and analysis of three-component digital images of soil structure: I. Method. J Soil Sci 43:541–549

    Article  Google Scholar 

  • Moran CJ, McBratney AB (1992b) Acquisition and analysis of three-component digital images of soil structure: II. Application to seed beds in a fallow management trial. J Soil Sci 43:551–566

    Article  Google Scholar 

  • Moran CJ, Koppi AJ, Murphy BW, McBratney AB (1988) Comparison of the macropore structure of a sandy loam surface soil horizon subjected to two tillage treatments. Soil Use Manag 4(3):96–102

    Article  Google Scholar 

  • Moran CJ, McBratney AB, Koppi AJ (1989) A rapid method for analysis of soil macropore structure. I. Specimen preparation and digital binary image production. Soil Sci Soc Am J 53:921–928

    Article  Google Scholar 

  • Murphy WM, Scholl JM, Baretto I (1977) Effects of cutting management on eight subtropical pasture mixtures. Agron J 69(4):662–666

    Article  Google Scholar 

  • Oh W, Lindquist B (1999) Image thresholding by indicator kriging. IEEE Trans Pattern Anal Mach Intell 21:590–602

    Article  Google Scholar 

  • Ojeda-Magaña B, Quintanilla-Domínguez J, Ruelas R, Tarquis AM, Gomez-Barba L, Andina D (2014) Identification of pore spaces in 3D CT soil images using PFCM partitional clustering. Geoderma 217:90–101

    Article  Google Scholar 

  • Oleschko K (1998) Delesse principle and statistical fractal sets: 1. Dimensional equivalents. Soil Tillage Res 49:255

    Article  Google Scholar 

  • Oleschko K, Brambila F, Aceff F, Mora LP (1998) From fractal analysis along a line to fractals on the plane. Soil Till Res 45:389–406

    Article  Google Scholar 

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  • Pachepsky YA, Yakovchenko V, Rabenhorst MC, Pooley C, Sikora LJ (1996) Fractal parameters of pore surfaces as derived from micromorphological data: effect of long term management practices. Geoderma 74:305

    Article  Google Scholar 

  • Pajor R, Falconer R, Hapca S, Otten W (2010) Modelling and quantifying the effect of heterogeneity in soil physical conditions on fungal growth. Biogeosciences 7:3731–3740

    Article  Google Scholar 

  • Perfect E, Donnelly B (2015) Bi-phase box counting: an improved method for fractal analysis of binary images. Fractals 23(1):1540010. 11 pp

    Article  Google Scholar 

  • Perfect E, Gentry RW, Sukop MC, Lawson JE (2006) Multifractal Sierpinski carpets: theory and application to upscaling effective saturated hydraulic conductivity. Geoderma 134:240–252

    Article  Google Scholar 

  • Perret JS, Prasher SO, Kantzas A, Langford C (1997) 3D visualization of soil macroporosity using X-ray CAT scanning. Can Agric Eng J 39:249–261

    Google Scholar 

  • Perret JS, Prasher SO, Kantzas A, Langford C (1998) Characterization of macropore morphology in a sandy loam soil using X-ray computer assisted tomography and geostatistical analysis. Can Water Resour J 23:143–166

    Article  Google Scholar 

  • Perret J, Prasher SO, Kantzas A, Langford C (1999) Three-dimensional quantification of macropore networks in undisturbed soil cores. Soil Sci Soc Am J 63:1530–1543

    Article  Google Scholar 

  • Perret JS, Prasher SO, Kacimov AR (2003) Mass fractal dimension of soil macropores using computed tomography: from box-counting to the cube-counting algorithm. Eur J Soil Sci 54:569–579

    Article  Google Scholar 

  • Perrier E, Bird N (2002) Modelling soil fragmentation: the PSF approach. Soil Tillage Res 64 (1–2):91–99

    Article  Google Scholar 

  • Perrier E, Rieu M, Sposito G, de Marsily G (1996) Models of the water retention curve for soils with a fractal pore-size distribution. Water Resour Res 32(10):3025–3031

    Article  Google Scholar 

  • Perrier E, Bird N, Rieu M (1999) Generalizing the fractal model of soil structure: the PSF approach. Geoderma 88(1999):137–l64

    Article  Google Scholar 

  • Perrier E, Tarquis AM, Dathe A (2006) A program for fractal and multifractal analysis of two-dimensional binary images: computer algorithms versus mathematical theory. Geoderma 134(3):284–294

    Article  Google Scholar 

  • Peyton RL, Gantzer CJ, Anderson SH, Haeffner BA, Pfeifer P (1994) Fractal dimension to describe soil macropore structure using X ray computed tomography. Water Resour Res 30:691–700

    Article  Google Scholar 

  • Pierret A, Capowiez Y, Belzunces L, Moran CJ (2002) 3D reconstruction and quantification of macropores using X-ray computed tomography and image analysis. Geoderma 106:247–271

    Article  Google Scholar 

  • Plotnick RE, Gardner RH, Hargrove WW, Prestegaard K, Perlmutter M (1996) Lacunarity analysis: a general technique for the analysis of spatial patterns. Phys Rev E 53:5461–5468

    Article  Google Scholar 

  • Posadas AND, Giménez D, Quiroz R, Protz R (2003) Multifractal characterization of soil pore spatial distributions. Soil Sci Soc Am J 67:1361–1369

    Article  Google Scholar 

  • Protz R, Van den Bygaart AJ (1998) Towards systematic image analysis in the study of soil micromorphology. Sci Soils 3. Available online at http://link.springer.de/link/service/journals/

  • Protz R, Sweeney SJ, Fox CA (1992) An application of spectral image analysis to soil micromorphology: I. Methods of analysis. Geoderma 53:275–287

    Article  Google Scholar 

  • Rachman A, Anderson SH, Gantzer CJ (2005) Computed-tomographic measurement of soil macroporosity parameters as affected by staff-stemmed grass hedges. Soil Sci Soc Am J 69:1609–1616

    Article  Google Scholar 

  • Rasband W (2006) Rasband, W.S., Image J, U. S. National Institutes of Health, Maryland, USA, http://imagej.nih.gov/ij/, 1997–2016

  • Rasiah V, Aylmore LAG (1998a) Estimating microscale spatial distribution of conductivity and pore continuity using computed tomography. Soil Sci Soc Am J 62:1197–1202

    Article  Google Scholar 

  • Rasiah V, Aylmore LAG (1998b) Characterizing the changes in soil porosity by computed tomography and fractal dimension. Soil Sci 163:203–211

    Article  Google Scholar 

  • Ridler TW, Calvard S (1978) Picture thresholding using an iterative selection method. IEEE Trans Syst Man Cybern 8:630–632

    Article  Google Scholar 

  • Rieu M, Sposito G (1991) Fractal fragmentation, soil porosity, and soil water properties: I Theory. Soil Sci Soc Am. 1(55):1231–1238. : II Applications. Soil Sci Soc Am. 1(55):1239–1244

    Google Scholar 

  • Ringrose-Voase AJ (1996) Measurement of soil macropore geometry by image analysis of sections through impregnated soil. Plant Soil 183:27–47

    Article  Google Scholar 

  • Ringrose-Voase AJ, Bullock P (1984) The automatic recognition and measurement of soil pore types by image analysis and computer programs. J Soil Sci 35:673–684

    Article  Google Scholar 

  • Ripley BD (1988) Statistical inference for spatial processes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rockhold ML, Yarwood RR, Selker JS (2004) Coupled microbial and transport processes in soils. Vadose Zone J 3:368–383

    Article  Google Scholar 

  • Rogasik H, Crawford JW, Wendroth O, Young IM, Joshko M, Ritz K (1999) Discrimination of soil phases by dual energy X-ray tomography. Soil Sci Soc Am J 63:741–751

    Article  Google Scholar 

  • Roy A, Perfect E (2014) Lacunarity analyses of multifractal and natural grayscale patterns. Fractals 22:1440003. 9 pp

    Article  Google Scholar 

  • Russ JC (1995) The image processing handbook. CRC Press LLC, Boca Raton

    Google Scholar 

  • Saa A, Gascó G, Grau JB, Antón JM, Tarquis AM (2007) Comparison of gliding box and box-counting methods in river network analysis. Nonlinear Process Geophys 14(5):603–613

    Article  Google Scholar 

  • Sahoo P, Wilkins C, Yeager J (1997) Threshold selection using Renyi’s entropy. Pattern Recogn 30(1):71–84

    Article  Google Scholar 

  • Serra J (1982) Image analysis and mathematical morphology by Jean Serra. Academic, Orlando. 0-12-637240-3

    Google Scholar 

  • Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13(1):146–165

    Article  Google Scholar 

  • Stewart JB, Moran CJ, Wood JT (1999) Macropore sheath: quantification of plant root and soil macropore association. Plant Soil 211:59–67

    Article  Google Scholar 

  • Taina I, Heck R, Elliot T (2008) Application of x-ray computed tomography to soil science: a literature review. Can J Soil Sci 379(88):1–19

    Article  Google Scholar 

  • Tarquis AM, Losada JC, Benito RM, Borondo F (2001) Multifractal analysis of tori destruction in a molecular Hamiltonian system. Phys Rev E 65:016213

    Article  Google Scholar 

  • Tarquis AM, Giménez D, Saa A, Díaz MC, Gascó JM (2003) Scaling and multiscaling of soil pore systems determined by image analysis. In: Radcliffe Y, Selim (eds) Scaling methods in soil physics, pachepsky. CRC Press, Boca Raton, 434 pp

    Google Scholar 

  • Tarquis AM, McInnes KJ, Key JR, Saa A, Garcia MR, Diaz MC (2006) Multiscaling analysis in a structured clay soil using 2D images. J Hydrol 322(1):236–246

    Article  Google Scholar 

  • Tarquis AM, Mèndez,V, Grau JB, Antòn JM, Andina D (2007). Fractals as pre-processing tool for computational intelligence application. In Computational Intelligence. Springer US, pp 193–212

    Google Scholar 

  • Tarquis AM, Heck RJ, Grau JB, Fabregat J, Sanchez ME, Antón JM (2008) Influence of thresholding in mass and entropy dimension of 3-D soil images. Nonlinear Process Geophys 15(6):881–891

    Article  Google Scholar 

  • Tarquis AM, Heck RJ, Andina D, Alvarez A, Antón JM (2009) Pore network complexity and thresholding of 3D soil images. Ecol Complex 6(3):230–239

    Article  Google Scholar 

  • Tarquis A, Platonov A, Matulka A, Grau J, Sekula E, Diez M, Redondo J (2014) Application of multifractal analysis to the study of sar features and oil spills on the ocean surface. Nonlinear Process Geophys 21:439–450

    Article  Google Scholar 

  • Terribile F, FitzPatrick EA (1992) The application of multilayer digital image processing techniques to the description of soil thin sections. Geoderma 55(1–2):159–174

    Article  Google Scholar 

  • Torre IG (2014) Theory and application of multifractal analysis methods in images for the study of soil structure. Master thesis, UPM

    Google Scholar 

  • Torre Iván G, Losada Juan C, Tarquis, Ana M. 2016 Multiscaling properties of soil images. Biosyst Eng. http://dx.doi.org/10.1016/j.biosystemseng.2016.11.006

  • Vogel HJ, Kretzschmar A (1996) Topological characterization of pore space in soil – sample preparation and digital image analysis. Geoderma 73:23–38

    Article  Google Scholar 

  • Vogel HJ, Weller U, Babel U (1993) Estimating orientation and width of channels and cracks at soil polished blocks—a stereological approach. Geoderma 56(1–4):301–316

    Article  Google Scholar 

  • Vogel HJ (2000) A numerical experiment on pore size, pore connectivity, water retention, permeability, and solute transport using network models. Eur J Soil Sci 51:99–105

    Article  Google Scholar 

  • Vogel HJ, Hoffmann H, Roth K (2005) Studies of crack dynamics in clay soil. I. Experimental methods, results, and morphological quantification. Geoderma 125:203–211

    Article  Google Scholar 

  • Voss R (1986) Random fractals: characterization and measurement. In: Pynn R, Skjeltorp A (eds) Scaling phenomena in disordered systems. Plenum, New York

    Google Scholar 

  • Wang W, Kravchenko AN, Smucker AJM, Rivers ML (2011) Comparison of image segmentation methods in simulated 2D and 3D microtomographic images of soil aggregates. Geoderma 162:231–241

    Article  Google Scholar 

  • Warner GS, Nieber JL, Moore ID, Geise RA (1989) Characterizing macropores in soil by computed tomography. Soil Sci Soc Am J 53:653–660

    Article  Google Scholar 

  • Young IM, Crawford JW (1991) The fractal structure of soil aggregates: its measurement and interpretation. Eur J Soil Sci 42(2):187–192

    Article  Google Scholar 

  • Young IM, Crawford JW, Nunan N, Otten W, Spiers A (2008) Microbial distribution in soils: physics and scaling. Adv Agron 100:81–121

    Article  Google Scholar 

  • Zamora-Castro SA, Oleschko K, Flores L, Ventura E Jr, Parrot JF (2008) Fractal mapping of pore and solid attributes. Vadose Zone J 7:473–492

    Article  Google Scholar 

  • Zhou H, Perfect E, Li BG, Lu YZ (2010) Effects of bit depth on the multifractal analysis of grayscale images. Fractals 18(01):127–138

    Article  Google Scholar 

  • Zhou H, Perfect E, Lu YZ, Li BG, Peng XH (2011) Multifractal analyses of grayscale and binary soil thin section images. Fractals 19(03):299–309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Tarquis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tarquis, A.M. et al. (2018). Scaling Characteristics of Soil Structure. In: McBratney, A., Minasny, B., Stockmann, U. (eds) Pedometrics. Progress in Soil Science. Springer, Cham. https://doi.org/10.1007/978-3-319-63439-5_6

Download citation

Publish with us

Policies and ethics