Skip to main content

Statistical Distributions of Soil Properties

  • Chapter
  • First Online:
Pedometrics

Part of the book series: Progress in Soil Science ((PROSOIL))

Abstract

A basic idea concerning collections of soil observations is to obtain statistical parameters from the data distribution. In soil, we recognise two kinds of statistical distributions relating to discrete or continuous random variables.

“The true logic of this world is in the calculus of probabilities.

James Clerk Maxwell

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agterberg FP (1995) Multifractal modeling of the sizes and grades of giant and supergiant deposits. Int Geol Rev 37:1–8

    Article  Google Scholar 

  • All-Union Guidelines for Soil Survey and Compilation of Large-Scale Maps of Land Tenure (1975) Kolos, Moscow, 95 [in Russian]

    Google Scholar 

  • Bingham C (1974) An antipodally symmetric distribution on the sphere. Ann Stat 2:1201–1225

    Article  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B Methodol 26(2):211–252

    Google Scholar 

  • Brown WK, Wohletz KH (1995) Derivation of the Weibull distribution based on physical principles and its connection to the Rosin-Rammler and lognormal distributions. J Appl Phys 78:2758–2763

    Article  Google Scholar 

  • Carsel RF, Parrish RS (1988) Developing joint probability distributions of soil water retention characteristics. Water Resour Res 24(5):755–769

    Article  Google Scholar 

  • Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data. Soc Ind Appl Math Rev 51(4):661–703

    Google Scholar 

  • Dahm H, Niemeyer J, Schroder D (2002) Application of the Weibull distribution to describe the vertical distribution of cesium-137 on a slope under permanent pasture in Luxembourg. J Environ Radioact 63(3):207–219

    Article  Google Scholar 

  • Evans M, Hastings N, Peacock B (2000) Statistical distributions, 3rd edn. Wiley, New York

    Google Scholar 

  • Fisher NI (1993) Statistical analysis of circular data. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fisher NI, Lewis T, Embleton B (1987) Statistical analysis of spherical data. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • FitzPatrick EA (1975) Particle size distribution and stone orientation patterns in some soils of north-east Scotland. In: Gemmell AMD (ed) Quaternary studies in North-East Scotland. Department of Geography, University of Aberdeen, Aberdeen, pp 49–60

    Google Scholar 

  • Forbes C, Evans M, Hastings N, Peacock B (2010) Statistical distributions, 4th edn. Wiley, New York

    Book  Google Scholar 

  • Jury WA (1982) Simulation of solute transport using a transfer function model. Water Resour Res 18(2):363–368

    Article  Google Scholar 

  • Jury WA, Sposito G (1985) Field calibration and validation of solute transport models for the unsaturated zone. Soil Sci Soc Am J 49:1331–1341

    Article  Google Scholar 

  • Jury WA, Sposito G, White RE (1986) A transfer function model of solute transport through soil. 1. Fundamental concepts. Water Resour Res 22:243–247

    Article  Google Scholar 

  • Kirk GJD, Nye PH (1986) A simple model for predicting the rates of dissolution of sparingly soluble calcium phosphates in soil. II Applications of the model. J Soil Sci 37:541–554

    Article  Google Scholar 

  • Knight MJ (1979) Structural analysis and mechanical origins of gilgai at Boorook, Victoria, Australia. Geoderma 23:245–283

    Article  Google Scholar 

  • Kosugi K (1996) Lognormal distribution model for unsaturated soil hydraulic properties. Water Resour Res 32(9):2697–2703

    Article  Google Scholar 

  • Lafeber D (1965) The graphical representation of planar pore patterns in soils. Aus J Soil Res 3:143–164

    Article  Google Scholar 

  • Mannaerts CM, Gabriels D (2000) A probabilistic approach for predicting rainfall soil erosion losses in semiarid areas. Can Underwrit 48(4):403–420

    Google Scholar 

  • Mardia KV (1972) Statistics of directional data. Academic, London

    Google Scholar 

  • Markus JA, McBratney AB (1996) An urban soil study: heavy metals in Glebe, Australia. Aust J Soil Res 34:453–465

    Article  Google Scholar 

  • McGrath D, Zhang C (2003) Spatial distribution of soil organic carbon concentrations in grassland of Ireland. Appl Geochem 18(10):1629–1639

    Article  Google Scholar 

  • Meeker WQ, Escobar LA (1998) Statistical methods for reliability data. Wiley, New York

    Google Scholar 

  • Mikheeva IV (2001) Statistical probability models of soil properties (on example of Kashtanozems in Kulunda steppe). Publishing of Siberian Branch of Russian Academy of Sciences, Novosibirsk. 103. (in Russian)

    Google Scholar 

  • Mikheeva IV (2005a) Monitoring and probabilistic-statistical assessment of stability and changeability of natural objects under contemporary processes (on example of Kashtanozems in Kulunda steppe). Publishing of Siberian Branch of Russian Academy of Sciences, Novosibirsk. 103. (in Russian)

    Google Scholar 

  • Mikheeva IV (2005b) Spatial fluctuations and statistical probability distributions of chestnut soil properties in the Kulunda steppe. Eurasian Soil Sci 38(3):278–288

    Google Scholar 

  • Mukherjee D, Kottegoda NT (1992) Stochastic model for soil moisture deficit in irrigated lands. J Irrig Drain Eng 118(4):527–542

    Article  Google Scholar 

  • Mulugeta D, Stoltenberg DE (1997) Seed bank characterization and emergence of a weed community in a moldboard plow system. Weed Sci 45:54–60

    Google Scholar 

  • Murphy CP, Bullock P, Turner RH (1977) Measurement and characterization of voids in soil thin-sections by image analysis. 1. Principles and techniques. J Soil Sci 28(3):498–508

    Article  Google Scholar 

  • Pachepsky Y, Crawford JW, Rawls WJ (eds) (1999) Fractals in soil science (Special Issue). Geoderma 88(3-4):103–364

    Google Scholar 

  • Perfect E, Kay BD, Rasiah V (1993) Multifractal model for soil aggregate fragmentation. Soil Sci Soc Am J 57:896–900

    Article  Google Scholar 

  • Petty GW, Huang W (2011) The modified gamma size distribution applied to inhomogeneous and nonspherical particles: key relationships and conversions. J Atmos Sci 68(7):1460–1473

    Article  Google Scholar 

  • Rajkai K, Kabos S, Van Genuchten MT, Jansson PE (1996) Estimation of water-retention characteristics from the bulk density and particle size distribution of Swedish soils. Soil Sci 161(12):832–845

    Article  Google Scholar 

  • Rose DA (1991) The variability of winter drainage in England and Wales. Soil Use Manag 7: 115–121

    Article  Google Scholar 

  • Russell DA (1976a) Particle-size distribution characterization for the coarse fraction of a granite soil: I. A model. Soil Sci Soc Am J 40:409–413

    Article  Google Scholar 

  • Russell DA (1976b) Particle-size distribution characterization for the coarse fraction of a granite soil: II. Disintegrating granite. Soil Sci Soc Am J 40:414–418

    Article  Google Scholar 

  • Russell DA (1976c) Particle-size distribution characterization for the coarse fraction of a granite soil: III. The coarse fraction of a granite sand. Soil Sci Soc Am J 40:418–422

    Article  Google Scholar 

  • Russo D, Bouton M (1992) Statistical analysis of spatial variability in unsaturated flow parameters. Water Resour Res 28(7):1911–1925

    Article  Google Scholar 

  • Siergist K (2001) Virtual laboratories in probability and statistics. Department of Mathematical Statistics. University of Alabama in Huntsville. http://www.math.uah.edu/stat/index.html

  • Utset A, Cid G (2001) Soil penetrometer resistance spatial variability in a Ferralsol at several soil moisture conditions. Soil Tillage Res 61(3–4):193–202

    Article  Google Scholar 

  • van Dusschoten D, Metzner R, Kochs J, Postma JA, Pflugfelder D, Bühler J, Schurr U, Jahnke S (2016) Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging. Plant Physiol 170(3):1176–1188

    Google Scholar 

  • Van Meirvenne M, Pannier J, Hofman G, Louwagie G (1996) Regional characterization of the long-term change in soil organic carbon under intensive agriculture. Soil Use Manag 12:86–94

    Article  Google Scholar 

  • Wade SD, Foster IDL, Baban SMJ (1996) The spatial variability of soil nitrates in arable and pasture landscapes: implications for the development of geographical information system models of nitrate leaching. Soil Use Manag 12(1):95–101

    Article  Google Scholar 

  • Weisstein EW (1995) “Cauchy Distribution” from MathWorld web resource. Wolfram Research, Inc

    Google Scholar 

  • Wolfram Research, Inc. (2010) Mathematica, Version 8.0, Champaign, IL

    Google Scholar 

  • Wulfsohn D, Gu Y, Wulfsohn A, Mojlaj EG (1996) Statistical analysis of wheat root growth patterns under conventional and no-till systems. Soil Tillage Res 38:1–16

    Article  Google Scholar 

  • Zobeck TM, Gill TE, Popham TW (1999) A two-parameter Weibull function to describe airborne dust particle size distributions. Earth Surf Process Landf 24:943–955

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex. B. McBratney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McBratney, A.B., Minasny, B., Mikheeva, I., Moyce, M., Bishop, T.F.A. (2018). Statistical Distributions of Soil Properties. In: McBratney, A., Minasny, B., Stockmann, U. (eds) Pedometrics. Progress in Soil Science. Springer, Cham. https://doi.org/10.1007/978-3-319-63439-5_3

Download citation

Publish with us

Policies and ethics