Skip to main content
Book cover

Pedometrics pp 555–593Cite as

One-, Two- and Three-Dimensional Pedogenetic Models

  • Chapter
  • First Online:

Part of the book series: Progress in Soil Science ((PROSOIL))

Abstract

Various methods have been used to measure or estimate pedogenic processes that are responsible for the differentiation of a soil profile. In this chapter, the modelling and quantification of these processes will be reviewed and discussed.

We know more about the movement of celestial bodies than about the soil underfoot”.

Leonardo da Vinci, circa 1500s

This is a preview of subscription content, log in via an institution.

References

  • Ahnert F (1977) Some comments on the quantitative formulation of geomorphological processes in a theoretical model. Earth Surface Processes 2:191–201

    Article  Google Scholar 

  • Aitken MJ (1998) An introduction to optical dating. The dating of quaternary sediments by the use of photon-stimulated luminescence. Oxford University Press, Oxford

    Google Scholar 

  • Barrett LR, Schaetzl RJ (1992) An examination of podzolization near Lake Michigan using chronofunctions. Can J Soil Sci 72:527–541

    Article  Google Scholar 

  • Bayer C, Lovato T, Dieckow J, Zanatta JA, Mielniczuk J (2006) A method for estimating coefficients of soil organic matter dynamics based on long-term experiments. Soil Tillage Res 91:217–226

    Article  Google Scholar 

  • Brantley SL, Megonigal JP, Scatena FN, Balogh-Brunstad Z, Barnes RT, Bruns MA, Van Cappellen P, Dontsova K, Hartnett HE, Hartshorn AS, Heimsath A, Herndon E, Jin L, Keller CK, Leake JR, Mcdowell WH, Meinzer FC, Mozdzer TJ, Petsch S, Pett-Ridge J, Pregitzer KS, Raymond PA, Riebe C, Shumaker S, Sutton-Grier A, Walter R, Yoo K (2011) Twelve testable hypotheses on the geobiology of weathering. Geobiology 9:140–165

    Google Scholar 

  • Brimhall GH, Dietrich WE (1987) Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis. Geochim Cosmochim Acta 51:567–587

    Article  Google Scholar 

  • Burke BC, Heimsath AM, White AF (2007) Coupling chemical weathering with soil production across soil-mantled landscapes. Earth Surf Process Landf 32:853–873

    Article  Google Scholar 

  • Burke BC, Heimsath AM, Dixon JL, Chappell J, Yoo K (2009) Weathering the escarpment: chemical and physical rates and processes, south-eastern Australia. Earth Surf Process Landf 34:768–785

    Article  Google Scholar 

  • Chadwick OA, Gavenda RT, Kelly EF, Ziegler K, Olson CG, Elliott WC, Hendricks DM (2003) The impact of climate on the biogeochemical functioning of volcanic soils. Chem Geol 202:195–223

    Article  Google Scholar 

  • Chmeleff J, von Blanckenburg F, Kossert K, Jakob D (2009) Determination of the 10Be half-life by multi collector ICP-mass spectrometry and liquid scintillation counting. Goldschmidt abstracts 2009 – C. Geochim Cosmochim Acta 73:A221–A221

    Google Scholar 

  • Cohen S, Willgoose G, Hancock G (2010) The mARM3D spatially distributed soil evolution model: three-dimensional model framework and analysis of hillslope and landform responses. J Geophys Res Earth 115:F04013

    Google Scholar 

  • Cohen S, Willgoose G, Svoray T, Hancock G, Sela S (2015) The effects of sediment transport, weathering, and aeolian mechanisms on soil evolution. J Geophys Res Earth 120:260–274

    Article  Google Scholar 

  • Cox P (2001) Description of the “TRIFFID” dynamic global vegetation model. Technical note 24. Hadley Centre, Met Office, London

    Google Scholar 

  • Dietrich WE, Reiss R, Hsu M-L, Montgomery DR (1995) A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrol Process 9:383–400

    Article  Google Scholar 

  • Dijkerman JC (1974) Pedology as a science: the role of data, models and theories in the study of natural soil systems. Geoderma 11:73–93

    Article  Google Scholar 

  • Dixon JL, Heimsath AM, Amundson R (2009) The critical role of climate and saprolite weathering in landscape evolution. Earth Surf Process Landf 34:1507–1521

    Article  Google Scholar 

  • Dörr H (1995) Application of 210Pb in soils. J Paleolimnol 13:157–168

    Article  Google Scholar 

  • Dosseto A, Turner SP, Chappell J (2008) The evolution of weathering profiles through time: new insights from uranium-series isotopes. Earth Planet Sci Lett 274:359–371

    Article  Google Scholar 

  • Dunne J, Elmore D, Muzikar P (1999) Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces. Geomorphology 27:3–11

    Article  Google Scholar 

  • Egli M, Dahms D, Norton K (2014) Soil formation rates on silicate parent material in alpine environments: different approaches-different results? Geoderma 213:320–333

    Article  Google Scholar 

  • Elzein A, Balesdent J (1995) Mechanistic simulation of vertical distribution of carbon concentrations and residence times in soils. Soil Sci Soc Am J 59:1328–1335

    Article  Google Scholar 

  • Finke PA (2012) Modeling the genesis of Luvisols as a function of topographic position in loess parent material. Quat Int 265:3–17

    Article  Google Scholar 

  • Finke PA, Hutson JL (2008) Modelling soil genesis in calcareous loess. Geoderma 145:462–479

    Article  Google Scholar 

  • Finke PA, Vanwalleghem T, Opolot E, Poesen J, Deckers J (2014) Estimating the effect of tree uprooting on variation of soil horizon depth by confronting pedogenetic simulations to measurements in a Belgian loess area. J Geophys Res-Earth Surf 118:1–16

    Google Scholar 

  • Foth HD, Ellis BG (1996) Soil fertility, 2nd edn. CRC Press, Lewis

    Google Scholar 

  • Furbish DJ, Fagherazzi S (2001) Stability of creeping soil and implications for hillslope evolution. Water Resour Res 37:2607–2618

    Article  Google Scholar 

  • Gabet EJ, Mudd SM (2010) Bedrock erosion by root fracture and tree throw: a coupled biogeomorphic model to explore the humped soil production function and the persistence of hillslope soils. J Geophys Res Earth 115:F04005

    Google Scholar 

  • Gabet EJ, Reichman OJ, Seabloom EW (2003) The effects of bioturbation on soil processes and sediment transport. Annu Rev Earth Planet Sci 31:249–274

    Article  Google Scholar 

  • Gale MR, Grigal DF (1987) Vertical root distributions of northern tree species in relation to successional status. Can J For Res 17:829–834

    Article  Google Scholar 

  • Gilbert GK (1877) Report on the geology of the Henry Mountains (Utah). United States Geological Survey, Washington, DC

    Google Scholar 

  • Granger DE, Muzikar PF (2001) Dating sediment burial with in situ-produced cosmogenic nuclides: theory, techniques, and limitations. Earth Planet Sci Lett 188:269–281

    Article  Google Scholar 

  • Green EG, Dietrich WE, Banfield JF (2006) Quantification of chemical weathering rates across an actively eroding hillslope. Earth Planet Sci Lett 242:155–169

    Article  Google Scholar 

  • Hay RL (1960) Rate of clay formation and mineral alteration in a 4000-year-old volcanic ash soil on St. Vincent, B.W.I. Am J Sci 258:354–368

    Article  Google Scholar 

  • He Q, Walling DE (1996) Interpreting particle size effects in the adsorption of 137Cs and unsupported 210Pb by mineral soils and sediments. J Environ Radioact 30:117–137

    Article  Google Scholar 

  • Heimsath AM, Dietrich WE, Nishiizumi K, Finkel RC (1997) The soil production function and landscape equilibrium. Nature 388:358–361

    Article  Google Scholar 

  • Heimsath AM, Dietrich WE, Nishiizumi K, Finkel RC (1999) Cosmogenic nuclides, topography, and the spatial variation of soil depth. Geomorphology 27:151–172

    Article  Google Scholar 

  • Heimsath AM, Fink D, Hancock GR (2009) The ‘humped’ soil production function: eroding Arnhem Land, Australia. Earth Surf Process Landf 34:1674–1684

    Article  Google Scholar 

  • Hénin S, Dupuis M (1945) Essai de bilan de la matière organique du sol. Ann Agronomiques 11:17–29

    Google Scholar 

  • Heuvelink GBM, Webster R (2001) Modelling soil variation: past, present and future. Geoderma 100:269–301

    Article  Google Scholar 

  • Hole FD (1981) Effects of animals on soil. Geoderma 25:75–112

    Article  Google Scholar 

  • Hoosbeek MR (1994) Towards the quantitative modeling of pedogenesis: a review – reply – pedology beyond the soil-landscape paradigm: pedodynamics and the connection to other sciences. Geoderma 63:303–307

    Article  Google Scholar 

  • Huggett RJ (1975) Soil landscape systems: a model of soil genesis. Geoderma 13:1–22

    Article  Google Scholar 

  • Huggett RJ (1998) Soil chronosequences, soil development, and soil evolution: a critical review. Catena 32:155–172

    Article  Google Scholar 

  • Humphreys GS, Wilkinson MT (2007) The soil production function: a brief history and its rediscovery. Geoderma 139:73–78

    Article  Google Scholar 

  • Hutson JL (2003) LEACHM e a process-based model of water and solute movement, transformations, plant uptake and chemical reactions in the unsaturated zone. Version 4. Research series no R03-1 (Dept. of Crop and Soil Sciences, Cornell University, Ithaca, NY). J Soil Sci 36:97–121

    Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Article  Google Scholar 

  • Jagercikova M, Evrard O, Balesdent J, Lefèvre I, Cornu S (2014) Modeling the migration of fallout radionuclides to quantify the contemporary transfer of fine particles in Luvisol profiles under different land uses and farming practices. Soil Tillage Res 140:82–97

    Article  Google Scholar 

  • Jarvis NJ, Villholth KG, Ulén B (1999) Modelling particle mobilization and leaching in macroporous soil. Eur J Soil Sci 50:621–632

    Article  Google Scholar 

  • Jenkinson DS, Coleman K (1994) Calculating the annual input of organic matter to soil from measurements of total organic carbon and radiocarbon. Eur J Soil Sci 45:167–174

    Article  Google Scholar 

  • Jenny H (1941) Factors of soil formation. A system of quantitative pedology. McGraw-Hill Book Company, New York

    Google Scholar 

  • Kaste JM, Heimsath AM, Bostick BC (2007) Short-term soil mixing quantified with fallout radionuclides. Geology 35:243–246

    Article  Google Scholar 

  • Kirkby MJ (1977) Soil development models as a component of slope models. Earth Surface Process 2:203–230

    Article  Google Scholar 

  • Kirkby MJ (1985) A basis for soil profile modelling in a geomorphic context. J Soil Sci 36:97–121

    Article  Google Scholar 

  • Kitayama K, Edward AGS, Drake DR, Mueller-Dombois D (1997a) Fate of a wet montane forest during soil ageing in Hawaii. J Ecol 85:669–679

    Article  Google Scholar 

  • Kitayama K, Schuur EAG, Drake DR, Mueller-Dombois D (1997b) Fate of a wet montane forest during soil ageing in Hawaii. J Ecol 85:669–679

    Article  Google Scholar 

  • Kros J (2002) Evaluation of biogeochemical models at local and regional scale. PhD thesis. Wageningen University, Wageningen, The Netherlands

    Google Scholar 

  • Lal D (1991) Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth Planet Sci Lett 104:424–439

    Article  Google Scholar 

  • Larsen IJ, Almond PC, Eger A, Stone JO, Montgomery DR, Malcolm B (2014) Rapid soil production and weathering in the southern alps, New Zealand. Science 343:637–640

    Article  Google Scholar 

  • Legros JP, Pedro G (1985) The causes of particle-size distribution in soil profiles derived from crystalline rocks, France. Geoderma 36:15–25

    Google Scholar 

  • Leith H (1975) Modelling the primary productivity of the world. In: Leith H, Whittaker RH (eds) Primary productivity of the biosphere. Springer-Verlag, Berlin

    Chapter  Google Scholar 

  • Levine ER, Knox RG (1994) A comprehensive framework for modeling soil genesis. In: Bryant RB, Arnold RW (eds) Quantitative modeling of soil forming processes. Soil Science Society of America, Madison, pp 77–89. SSSA Special Publication No 39

    Google Scholar 

  • Ludwig W, Probst JL (1998) River sediment discharge to the oceans: present-day controls and global budget. Am J Sci 298:265–295

    Article  Google Scholar 

  • Mabit L, Benmansour M, Walling DE (2008) Comparative advantages and limitations of the fallout radionuclides 137Cs, 210Pbex and 7Be for assessing soil erosion and sedimentation. J Environ Radioact 99:1799–1807

    Article  Google Scholar 

  • Maher K (2010) The dependence of chemical weathering rates on fluid residence time. Earth Planet Sci Lett 294:101–110

    Article  Google Scholar 

  • Minasny B, McBratney AB (1999) A rudimentary mechanistic model for soil production and landscape development. Geoderma 90:3–21

    Article  Google Scholar 

  • Minasny B, McBratney AB (2001) A rudimentary mechanistic model for soil production and landscape development II. A two-dimensional model incorporating chemical weathering. Geoderma 103:161–179

    Article  Google Scholar 

  • Minasny B, McBratney AB (2006) Mechanistic soil-landscape modelling as an approach to developing pedogenetic classifications. Geoderma 133:138–149

    Article  Google Scholar 

  • Minasny B, Finke P, Stockmann U, Vanwalleghem T, McBratney AB (2015) Resolving the integral connection between pedogenesis and landscape evolution. Earth Sci Rev 150:102–120

    Article  Google Scholar 

  • Montgomery DR (2007) Soil erosion and agricultural sustainability. Proc Natl Acad Sci 104:13268–13272

    Article  Google Scholar 

  • Müller-Lemans H, van Dorp F (1996) Bioturbation as a mechanism for radionuclide transport in soil: relevance of earthworms. J Environ Radioact 31:7–20

    Article  Google Scholar 

  • Nishiizumi K, Kohl CP, Arnold JR, Klein J, Fink D, Middleton R (1991) Cosmic ray produced 10Be and 26Al in Antarctic rocks: exposure and erosion history. Earth Planet Sci Lett 104:440–454

    Article  Google Scholar 

  • NRC (2010) Landscapes on the edge. New horizons for research on Earth’s surface. The National Academy Press, Washington, DC

    Google Scholar 

  • Opolot E, Yu YY, Finke PA (2015) Modeling soil genesis at pedon and landscape scales: achievements and problems. Quat Int 376:34–46

    Article  Google Scholar 

  • Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation and confirmation of numerical models in the earth sciences. Science 263:641–646

    Article  Google Scholar 

  • Paton TR, Humphreys GS, Mitchell PB (1995) Soils: a new global view. University College London Press, London

    Google Scholar 

  • Portenga EW, Bierman PR (2011) Understanding Earth’s eroding surface with 10Be. GSA Today 21:4–10

    Article  Google Scholar 

  • Riebe CS, Kirchner JW, Finkel RC (2003) Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance. Geochim Cosmochim Acta 67:4411–4427

    Article  Google Scholar 

  • Riebe CS, Kirchner JW, Finkel RC (2004a) Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth Planet Sci Lett 224:547–562

    Article  Google Scholar 

  • Riebe CS, Kirchner JW, Finkel RC (2004b) Sharp decrease in long-term chemical weathering rates along an altitudinal transect. Earth Planet Sci Lett 218:421–434

    Article  Google Scholar 

  • Salvador-Blanes S, Minasny B, McBratney AB (2007) Modelling long term in-situ soil profile evolution – application to the genesis of soil profiles containing stone layers. Eur J Soil Sci 58:1535–1548

    Article  Google Scholar 

  • Salvador-Blanes S, Minasny B, McBratney AB (2011) Modelling soil formation at the profile scale. European Geosciences Union General Assembly 2011. Geophys Res Abstr 13:EGU2011–EG13012

    Google Scholar 

  • Sauer D, Schellmann G, Stahr K (2007) A soil chronosequence in the semi-arid environment of Patagonia (Argentina). Catena 71:382–393

    Article  Google Scholar 

  • Sauer D, Finke PA, Schülli-Maurer I, Sperstad R, Sørensen R, Høeg HI, Stahr K (2012) Testing a soil development model against southern Norway soil chronosequences. Quat Int 265:18–31

    Article  Google Scholar 

  • Schaetzel RJ, Barrett LR, Winkler JA (1994) Choosing models for soil chronofunctions and fitting them to data. Eur J Soil Sci 45:219–232

    Article  Google Scholar 

  • Schoonejans J, Vanacker V, Opfergelt S, Ameijeiras-Mariño Y, Christl M (2016) Kinetically limited weathering at low denudation rates in semiarid climatic conditions. J Geophys Res Earth 121:336–350

    Article  Google Scholar 

  • Sharmeen S, Willgoose GR (2006) The interaction between armouring and particle weathering for eroding landscapes. Earth Surf Process Landf 31:1195–1210

    Article  Google Scholar 

  • Shouse M, Phillips J (2016) Soil deepening by trees and the effects of parent material. Geomorphology 269:1–7

    Article  Google Scholar 

  • Sommer M, Gerke HH, Deumlich D (2008) Modelling soil landscape genesis: a “time split” approach for hummocky agricultural landscapes. Geoderma 145:480–493

    Article  Google Scholar 

  • Sparks DL (1995) 7 – Kinetics of soil chemical processes. Environmental soil chemistry. Academic, Boston, pp 159–185

    Google Scholar 

  • Stevens PR, Walker TW (1970) The chronosequence concept and soil formation. Q Rev Biol 45:333–350

    Article  Google Scholar 

  • Stockmann U (2010) Quantifying processes of pedogenesis. A field study situated in the Werrikimbe National Park in south-eastern Australia. Faculty of Agriculture, Food and Natural Resources. The University of Sydney, p 234

    Google Scholar 

  • Stockmann U, Minasny B, McBratney A (2011) Quantifying processes of pedogenesis. Adv Agron 113:1–74

    Article  Google Scholar 

  • Stockmann U, Minasny B, Pietsch TJ, McBratney AB (2013) Quantifying processes of pedogenesis using optically stimulated luminescence. Eur J Soil Sci 64:145–160

    Article  Google Scholar 

  • Stockmann U, Minasny B, McBratney AB (2014) How fast does soil grow? Geoderma 216:48–61

    Article  Google Scholar 

  • Stone JO (2000) Air pressure and cosmogenic isotope production. J Geophys Res 105:23,753–723,759

    Article  Google Scholar 

  • Suresh PO, Dosseto A, Hesse PP, Handley HK (2013) Soil formation rates determined from uranium-series isotope disequilibria in soil profiles from the southeastern Australian highlands. Earth Planet Sci Lett 379:26–37

    Article  Google Scholar 

  • Sverdrup H, Warfvinge P (1993) Calculating field weathering rates using a mechanistic geochemical model – profile. Appl Geochem 8:273–283

    Article  Google Scholar 

  • Syvitski JPM, Vorosmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:376–380

    Article  Google Scholar 

  • Temme AJAM, Vanwalleghem T (2016) LORICA – a new model for linking landscape and soil profile evolution: development and sensitivity analysis. Comput Geosci 90(Part B):131–143

    Article  Google Scholar 

  • Tranter G, Minasny B, McBratney AB, Murphy B, McKenzie NJ, Grundy M (2007) Building and testing conceptual and empirical models for predicting soil bulk density. Soil Use Manag 23:437–443

    Article  Google Scholar 

  • van der Meij WM, Temme AJAM, de Kleijn CMFJJ, Reimann T, Heuvelink GBM, Zwoliński Z, Rachlewicz G, Rymer K, Sommer M (2015) Arctic soil development on a series of marine terraces on Central Spitsbergen, Svalbard: a combined geochronology, fieldwork and modelling approach. SOIL Discuss 2015:1345–1391

    Article  Google Scholar 

  • Van Wambeke A (1972) Mathematical expression of eluviation-illuviation processes and the computation of the effects of clay migration in homogeneous soil parent materials. J Soil Sci 23:325–332

    Article  Google Scholar 

  • Van Wambeke A (1976) A mathematical model for the differential movement of two soil constitutents into illuvial horizons: application to clay ratios in argillic horizons. J Soil Sci 27:111–120

    Article  Google Scholar 

  • Vanwalleghem T, Stockmann U, Minasny B, McBratney AB (2013) A quantitative model for integrating landscape evolution and soil formation. J Geophys Res Earth 118:1–17

    Google Scholar 

  • Viaud V, Angers DA, Walter C (2010) Towards landscape-scale modeling of soil organic matter dynamics in agroecosystems. Soil Sci Soc Am J 74:1–14

    Article  Google Scholar 

  • Wagenet RJ, Hutson JL, Bouma J (1994) Modeling water and chemical fluxes as driving forces of pedogenesis. In: Bryant RB, Arnold RW (eds) Quantitative modeling of soil forming processes. Soil Science Society of America, Madison, pp 17–35. SSSA Special Publication No 39

    Google Scholar 

  • Walter C, Viscarra-Rossel RA, McBratney AB (2003) Spatio-temporal simulation of the field-scale evolution of organic carbon over the landscape. Soil Sci Soc Am J 67:1477–1486

    Article  Google Scholar 

  • Welivitiya WDDP, Willgoose GR, Hancock GR, Cohen S (2016) Exploring the sensitivity on a soil area-slope-grading relationship to changes in process parameters using a pedogenesis model. Earth Surf Dynam Discuss 2016:1–43

    Article  Google Scholar 

  • Wells T, Willgoose GR, Hancock GR (2008) Modeling weathering pathways and processes of the fragmentation of salt weathered quartz-chlorite schist. J Geophys Res Earth 113:F01014

    Google Scholar 

  • White AF, Blum AE (1995) Effects of climate on chemical weathering in watersheds. Geochim Cosmochim Acta 59:1729–1747

    Article  Google Scholar 

  • White AF, Blum AE, Schulz MS, Bullen TD, Harden JW, Peterson ML (1996) Chemical weathering rates of a soil chronosequence on granitic alluvium: I. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates. Geochim Cosmochim Acta 60:2533–2550

    Article  Google Scholar 

  • Wilkinson MT, Humphreys GS (2005) Exploring pedogenesis via nuclide-based soil production rates and OSL-based bioturbation rates. Aust J Soil Res 43:767–779

    Article  Google Scholar 

  • Wilkinson BH, McElroy BJ (2007) The impact of humans on continental erosion and sedimentation. Geol Soc Am Bull 119:140–156

    Article  Google Scholar 

  • Yaalon DH (1975) Conceptual models in pedogenesis: can soil-forming functions be solved? Geoderma 14:189–205

    Article  Google Scholar 

  • Yoo K, Amundson R, Heimsath AM, Dietrich WE, Brimhall GH (2007) Integration of geochemical mass balance with sediment transport to calculate rates of soil chemical weathering and transport on hillslopes. J Geophys Res 112:1–15

    Google Scholar 

  • Zapata F (2003) The use of environmental radionuclides as tracers in soil erosion and sedimentation investigations: recent advances and future developments. Soil Tillage Res 69:3–13

    Article  Google Scholar 

  • Zwertvaegher A, Finke P, De Smedt P, Gelorini V, Van Meirvenne M, Bats M, De Reu J, Antrop M, Bourgeois J, De Maeyer P, Verniers J, Crombe P (2013) Spatio- temporal modeling of soil characteristics for soilscape reconstruction. Geoderma 207-208:166–179

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uta Stockmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stockmann, U., Salvador-Blanes, S., Vanwalleghem, T., Minasny, B., McBratney, A.B. (2018). One-, Two- and Three-Dimensional Pedogenetic Models. In: McBratney, A., Minasny, B., Stockmann, U. (eds) Pedometrics. Progress in Soil Science. Springer, Cham. https://doi.org/10.1007/978-3-319-63439-5_19

Download citation

Publish with us

Policies and ethics