Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 395 Accesses

Abstract

In recent years a new wealth of exact results has become available for path-integrals in supersymmetric QFTs on curved manifolds by means of supersymmetric localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See below (5.2) for Wilson loops.

  2. 2.

    Here we consider the spacetime in Euclidean signature, for which the path-ordered exponential is not a pure complex phase and there is no unitarity bound \(\langle \mathcal {W} \rangle \le 1\), see comments in [14]. We recommend reading the review in [15], which also deals with loop operators in ABJM theory.

  3. 3.

    By this counting over the full set of 16 super-Poincaré \(\mathcal {Q}\)’s and 16 superconformal \(\mathcal {S}\)’s generators, an operator that breaks all the \(\mathcal {Q}\)’s while preserving at least one \(\mathcal {S}\) is still called supersymmetric.

  4. 4.

    In gauge theory this is equivalent to the statement that gauge and scalar propagators coincide in Feynman gauge and cancel order by order in perturbation theory. At strong coupling, it is easy to check that the dual classical worldsheet has zero regularized area [19, 20] (see 3.100 in this thesis), but the vanishing of the subleading corrections is less transparent. The one-loop order is is rather subtle because one needs an ad hoc prescription to subtract divergences [20, 21].

  5. 5.

    It can be computed with the matrix integral technology in [35] and references therein.

  6. 6.

    However there exists a claim of disagreement in the subleading order of correlators of latitude loops at strong coupling [43].

  7. 7.

    A derivation and other practical expansions are in [53, 54].

  8. 8.

    These are diagrams that “stretch” across the circular loop without carrying interaction vertices.

  9. 9.

    The proof is not completed at the same level of rigour of [2] for the circle: one still needs to compute the one-loop determinants around the localization locus and effectively prove that the Wilson loops localizes in YM\(_2\) on \(S^2\).

  10. 10.

    About the topological contribution of the measure, its relevance in canceling the divergences occurring in evaluating quantum corrections to the string partition function has been first discussed in [19] after the observations of [67, 68]. We use this general argument below, see discussion around (5.79).

  11. 11.

    In presence of zero modes of the classical solution, a possible dependence of the path-integral measure on the classical solution comes from the integration over collective coordinates associated to them, see arguments in [18].

  12. 12.

    There exist other solutions with more wrapping in \(S^5\), but they are not supersymmetric [65].

  13. 13.

    See also [71] for an analysis of the contribution to the string partition function due to (broken) zero modes of the solution in [18].

  14. 14.

    The reason is that the initial angular coordinates (5.24) in the background (5.25) would not yield a bosonic quadratic Lagrangian in the standard form for the kinetic terms of the eight physical fields.

  15. 15.

    In the language of [73], this shift corresponds to a different choice of orthonormal vectors that are orthogonal to the string surface.

  16. 16.

    In the free Lagrangian \(\mathcal {L}_F^{(2)}\) the spinor field \(\Psi \) couples only to the classical background (5.25), which lies in the timeslice \(t=0\) and has Euclidean signature (5.33). This may cause some issues with the fact that the Green-Schwarz action and the Majorana condition are only defined for a worldsheet of Lorentzian signature. Notice that the analytic continuation of the AdS time t does not affect the signature of the classical solution. Here we simply think of doing the expansion for imaginary worldsheet time \(\tau \) and only at the end Wick-rotate back to Euclidean signature (5.25).

  17. 17.

    A non-trivial matrix structure is also encountered in the fermionic sector of the circular Wilson loop [20], but the absence of a background geometry in \(S^5\) leads to a simpler gamma structure. It comprises only three gamma combinations (\(\Gamma _0,\Gamma _4,\Gamma _{04}\)), whose algebra allows their identification with the three Pauli matrices without the need of labelling the subspaces.

  18. 18.

    The same property is showed by (5.26) in [20].

  19. 19.

    In this reference a regularization slightly different from [75, 76] was adopted.

  20. 20.

    This is expected from an analysis of the Seeley-DeWitt coefficients in (3.104), with logarithmic divergencies given by (3.111) instead of (3.113) because in (5.78) we are not including the effect of the non-trivial Jacobian explained below (3.111).

  21. 21.

    This is convenient because of the different form for the special modes (5.68)–(5.70) together with the relabeling discussed above.

  22. 22.

    This can be proved analytically since the summand behaves as \(\mu \, e^{-\mu \ell } \ell ^{-2}\) for large \(\ell \). Removing the cutoff makes the sum vanish.

  23. 23.

    This is also due to the volume part of the Euler number \(\chi _v(\theta _0)\) being independent of \(\sigma _0\) up to \(\epsilon \) corrections, see (5.79).

  24. 24.

    The SU(2|2) quantum numbers of the fields are summarized in (4.26) of [66]. For vanishing \(\theta _0\) it was known that they fill representations of the symmetry group \(OSp(4^*|4)\) of the half-supersymmetric circular Wilson loop [78].

  25. 25.

    We are referring to formulas (4.27) and (4.28) in [66].

  26. 26.

    See Eq. (5.50) in [66].

  27. 27.

    This resembles the quest for an “integrability-preserving” regularization scheme, different from the most natural one suggested by worldsheet field theory considerations, in the worldsheet calculations of light-like cusps in \(\mathcal {N}=4\) SYM [80] and ABJM theory [81].

References

  1. N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831 (2003), arXiv:hep-th/0206161

  2. V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops. Commun. Math. Phys. 313, 71 (2012). arXiv:0712.2824

  3. E. Witten, Supersymmetry and Morse theory. J. Diff. Geom. 17, 661 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Berline, M. Vergne, Classes caracteristiques equivariantes. Formule de localisation en cohomologie equivariante. CR Acad. Sci. Paris 295, 539 (1982)

    MATH  Google Scholar 

  5. N. Berline, M. Vergne, Zeros d’un champ de vecteurs et classes characteristiques equivariantes. Duke Math. J. 50, 539 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. M.F. Atiyah, R. Bott, The moment map and equivariant cohomology. Topology 23, 1 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. J.J. Duistermaat, G.J. Heckman, On the Variation in the cohomology of the symplectic form of the reduced phase space. Invent. Math. 69, 259 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. M. Marino, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories. J. Phys. A 44, 463001 (2011), arXiv:1104.0783

  9. S. Cremonesi, An introduction to localisation and supersymmetry in curved space, PoS Modave 2013, 002, in Proceedings, 9th Modave Summer School in Mathematical Physics (2013), p. 002

    Google Scholar 

  10. V. Pestun, M. Zabzine, Introduction to localization in quantum field theory, arXiv:1608.02953, http://inspirehep.net/record/1480380/files/arXiv:1608.02953.pdf

  11. V. Pestun, Review of localization in geometry, arXiv:1608.02954, http://inspirehep.net/record/1480381/files/arXiv:1608.02954.pdf

  12. J. Teschner, in New Dualities of Supersymmetric Gauge Theories (Springer, Cham, Switzerland, 2016)

    Google Scholar 

  13. V. Pestun et al., in Localization Techniques in Quantum Field Theories, arXiv:1608.02952

  14. N. Drukker, D.J. Gross, H. Ooguri, Wilson loops and minimal surfaces. Phys. Rev. D 60, 125006 (1999). arXiv:hep-th/9904191

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Preti, Studies on Wilson loops, correlators and localization in supersymmetric quantum field theories, PhD Thesis, https://inspirehep.net/record/1592204/files/Thesis_main.pdf

  16. A. Dymarsky, V. Pestun, Supersymmetric Wilson loops in \(\cal{N}=4\) SYM and pure spinors. JHEP 1004, 115 (2010). arXiv:0911.1841

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. V. Cardinali, L. Griguolo, D. Seminara, Impure aspects of supersymmetric Wilson loops. JHEP 1206, 167 (2012). arXiv:1202.6393

    Article  ADS  MathSciNet  Google Scholar 

  18. K. Zarembo, Supersymmetric Wilson loops. Nucl. Phys. B 643, 157 (2002). arXiv:hep-th/0205160

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. N. Drukker, D.J. Gross, A.A. Tseytlin, Green-Schwarz string in \(AdS_5 \times S^5\): Semiclassical partition function. JHEP 0004, 021 (2000). arXiv:hep-th/0001204

    Article  ADS  MATH  Google Scholar 

  20. M. Kruczenski, A. Tirziu, Matching the circular Wilson loop with dual open string solution at 1-loop in strong coupling. JHEP 0805, 064 (2008). arXiv:0803.0315

    Article  ADS  MathSciNet  Google Scholar 

  21. E.I. Buchbinder, A.A. Tseytlin, \(1/N\) correction in the D3-brane description of a circular Wilson loop at strong coupling. Phys. Rev. D 89, 126008 (2014). arXiv:1404.4952

    Article  ADS  Google Scholar 

  22. Z. Guralnik, S. Kovacs, B. Kulik, Less is more: Non-renormalization theorems from lower dimensional superspace. Int. J. Mod. Phys. A 20, 4546 (2005). arXiv:hep-th/0409091 (in Non-perturbative quantum chromodynamics. Proceedings, 8th Workshop, Paris, France, June 7–11, 2004, pp. 4546–4553)

  23. Z. Guralnik, B. Kulik, Properties of chiral Wilson loops. JHEP 0401, 065 (2004). arXiv:hep-th/0309118

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. A. Dymarsky, S.S. Gubser, Z. Guralnik, J.M. Maldacena, Calibrated surfaces and supersymmetric Wilson loops. JHEP 0609, 057 (2006). arXiv:hep-th/0604058

    Article  ADS  MathSciNet  Google Scholar 

  25. A. Kapustin, E. Witten, Electric-magnetic duality and the geometric Langlands program. Commun. Num. Theor. Phys. 1, 1 (2007). arXiv:hep-th/0604151

    Article  MathSciNet  MATH  Google Scholar 

  26. N. Drukker, S. Giombi, R. Ricci, D. Trancanelli, Supersymmetric Wilson loops on \(S^3\). JHEP 0805, 017 (2008). arXiv:0711.3226

    Article  ADS  MathSciNet  Google Scholar 

  27. N. Drukker, S. Giombi, R. Ricci, D. Trancanelli, More supersymmetric Wilson loops. Phys. Rev. D 76, 107703 (2007). arXiv:0704.2237

    Article  ADS  MathSciNet  Google Scholar 

  28. D. Correa, J. Maldacena, A. Sever, The quark anti-quark potential and the cusp anomalous dimension from a TBA equation. JHEP 1208, 134 (2012). arXiv:1203.1913

    Article  ADS  Google Scholar 

  29. N. Drukker, S. Giombi, R. Ricci, D. Trancanelli, Wilson loops: from four-dimensional SYM to two-dimensional YM. Phys. Rev. D 77, 047901 (2008). arXiv:0707.2699

    Article  ADS  MathSciNet  Google Scholar 

  30. A. Bassetto, L. Griguolo, Two-dimensional QCD, instanton contributions and the perturbative Wu-Mandelstam-Leibbrandt prescription. Phys. Lett. B 443, 325 (1998). arXiv:hep-th/9806037

    Article  ADS  Google Scholar 

  31. S. Giombi, V. Pestun, Correlators of local operators and 1/8 BPS Wilson loops on \(S^2\) from 2d YM and matrix models. JHEP 1010, 033 (2010). arXiv:0906.1572

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. N. Drukker, J. Plefka, Superprotected n-point correlation functions of local operators in \(\cal{N}=4\) super Yang-Mills. JHEP 0904, 052 (2009). arXiv:0901.3653

    Article  ADS  MathSciNet  Google Scholar 

  33. V. Pestun, Localization of the four-dimensional \(\cal{N}=4\) SYM to a two-sphere and 1/8 BPS Wilson loops. JHEP 1212, 067 (2012). arXiv:0906.0638

    Article  ADS  MathSciNet  Google Scholar 

  34. E. Witten, On quantum gauge theories in two-dimensions. Commun. Math. Phys. 141, 153 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. M. Marino, Les Houches lectures on matrix models and topological strings. arXiv:hep-th/0410165

  36. A. Bassetto, L. Griguolo, F. Pucci, D. Seminara, Supersymmetric Wilson loops at two loops. JHEP 0806, 083 (2008). arXiv:0804.3973

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. M. Bonini, L. Griguolo, M. Preti, Correlators of chiral primaries and 1/8 BPS Wilson loops from perturbation theory. JHEP 1409, 083 (2014). arXiv:1405.2895

    Article  ADS  Google Scholar 

  38. G.W. Semenoff, K. Zarembo, More exact predictions of SUSYM for string theory. Nucl. Phys. B 616, 34 (2001). arXiv:hep-th/0106015

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. K. Zarembo, Open string fluctuations in \(AdS_5\times S^5\) and operators with large R charge. Phys. Rev. D 66, 105021 (2002). arXiv:hep-th/0209095

    Article  ADS  MathSciNet  Google Scholar 

  40. G.W. Semenoff, D. Young, Exact 1/4 BPS Loop: chiral primary correlator. Phys. Lett. B 643, 195 (2006). arXiv:hep-th/0609158

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. D. Young, BPS Wilson loops on \(S^2\) at Higher loops. JHEP 0805, 077 (2008). arXiv:0804.4098

    Article  ADS  MathSciNet  Google Scholar 

  42. A. Bassetto, L. Griguolo, F. Pucci, D. Seminara, S. Thambyahpillai et al., Correlators of supersymmetric Wilson-loops, protected operators and matrix models in \(\cal{N} = 4\) SYM. JHEP 0908, 061 (2009). arXiv:0905.1943

    Article  ADS  MathSciNet  Google Scholar 

  43. A. Bassetto, L. Griguolo, F. Pucci, D. Seminara, S. Thambyahpillai, D. Young, Correlators of supersymmetric Wilson loops at weak and strong coupling. JHEP 1003, 038 (2010). arXiv:0912.5440

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. S. Giombi, V. Pestun, Correlators of Wilson loops and local operators from multi-matrix models and strings in AdS. JHEP 1301, 101 (2013). arXiv:1207.7083

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. S. Giombi, V. Pestun, The 1/2 BPS ’t Hooft loops in \(\cal{N}=4\) SYM as instantons in 2d Yang-Mills. J. Phys. A 46, 095402 (2013). arXiv:0909.4272

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. D. Correa, J. Henn, J. Maldacena, A. Sever, An exact formula for the radiation of a moving quark in \(\cal{N}=4\) super Yang Mills. JHEP 1206, 048 (2012). arXiv:1202.4455

    Article  ADS  MathSciNet  Google Scholar 

  47. B. Fiol, B. Garolera, A. Lewkowycz, Exact results for static and radiative fields of a quark in \(\cal{N}=4\) super Yang-Mills. JHEP 1205, 093 (2012). arXiv:1202.5292

    Article  ADS  Google Scholar 

  48. N. Gromov, A. Sever, Analytic solution of Bremsstrahlung TBA. JHEP 1211, 075 (2012). arXiv:1207.5489

    Article  ADS  MathSciNet  Google Scholar 

  49. N. Gromov, F. Levkovich-Maslyuk, G. Sizov, Analytic solution of Bremsstrahlung TBA II: turning on the sphere angle. JHEP 1310, 036 (2013). arXiv:1305.1944

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. M. Bonini, L. Griguolo, M. Preti, D. Seminara, Bremsstrahlung function, leading Luscher correction at weak coupling and localization. JHEP 1602, 172 (2016). arXiv:1511.05016

  51. K. Zarembo, Localization and AdS/CFT Correspondence. arXiv:1608.02963

  52. D.E. Berenstein, R. Corrado, W. Fischler, J.M. Maldacena, The Operator product expansion for Wilson loops and surfaces in the large N limit. Phys. Rev. D 59, 105023 (1999). arXiv:hep-th/9809188

    Article  ADS  MathSciNet  Google Scholar 

  53. J. Erickson, G. Semenoff, K. Zarembo, Wilson loops in \(\cal{N} = 4\) supersymmetric Yang-Mills theory. Nucl. Phys. B 582, 155 (2000). arXiv:hep-th/0003055

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. N. Drukker, D.J. Gross, An Exact prediction of \(\cal{N}=4\) SUSYM theory for string theory. J. Math. Phys. 42, 2896 (2001). arXiv:hep-th/0010274

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. J. Gomis, F. Passerini, Holographic Wilson Loops. JHEP 0608, 074 (2006). arXiv:hep-th/0604007

    Article  ADS  MathSciNet  Google Scholar 

  56. J. Gomis, F. Passerini, Wilson Loops as D3-Branes. JHEP 0701, 097 (2007). arXiv:hep-th/0612022

    Article  ADS  MathSciNet  Google Scholar 

  57. S. Yamaguchi, Wilson loops of anti-symmetric representation and D5-branes. JHEP 0605, 037 (2006). arXiv:hep-th/0603208

    Article  ADS  MathSciNet  Google Scholar 

  58. S.A. Hartnoll, S.P. Kumar, Higher rank Wilson loops from a matrix model. JHEP 0608, 026 (2006). arXiv:hep-th/0605027

    Article  ADS  MathSciNet  Google Scholar 

  59. M. Sakaguchi, K. Yoshida, A Semiclassical string description of Wilson loop with local operators. Nucl. Phys. B 798, 72 (2008). arXiv:0709.4187

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. C. Kristjansen, Y. Makeenko, More about one-loop effective action of open superstring in \(AdS_5\times S^5\). JHEP 1209, 053 (2012). arXiv:1206.5660

    Article  ADS  MathSciNet  Google Scholar 

  61. R. Bergamin, A.A. Tseytlin, Heat kernels on cone of \(AdS_2\) and \(k\)-wound circular Wilson loop in \(AdS_5 \times S^5\) superstring. J. Phys. A 49, 14LT01 (2016), arXiv:1510.06894

  62. A. Faraggi, J.T. Liu, L.A.P. Zayas, G. Zhang, One-loop structure of higher rank Wilson loops in AdS/CFT. Phys. Lett. B 740, 218 (2015). arXiv:1409.3187

  63. N. Drukker, V. Forini, Generalized quark-antiquark potential at weak and strong coupling. JHEP 1106, 131 (2011). arXiv:1105.5144

    Article  ADS  MATH  Google Scholar 

  64. N. Drukker, B. Fiol, On the integrability of Wilson loops in \(AdS_5 \times S^5\): Some periodic ansatze. JHEP 0601, 056 (2006). arXiv:hep-th/0506058

    Article  ADS  Google Scholar 

  65. N. Drukker, 1/4 BPS circular loops, unstable world-sheet instantons and the matrix model. JHEP 0609, 004 (2006). arXiv:hep-th/0605151

    Article  ADS  MathSciNet  Google Scholar 

  66. A. Faraggi, L.A. Pando Zayas, G.A. Silva, D. Trancanelli, Toward precision holography with supersymmetric Wilson loops. JHEP 1604, 053 (2016). arXiv:1601.04708

  67. S. Forste, D. Ghoshal, S. Theisen, Stringy corrections to the Wilson loop in \(\cal{N}=4\) superYang-Mills theory. JHEP 9908, 013 (1999). arXiv:hep-th/9903042

    Article  ADS  MATH  Google Scholar 

  68. S. Forste, D. Ghoshal, S. Theisen, Wilson loop via AdS/CFT duality, arXiv:hep-th/0003068 (in: Proceedings, TMR Meeting on Quantum Aspects of Gauge Theories, Supersymmetry and Unification, [PoStmr99,018(1999)])

  69. R. Roiban, A. Tirziu, A.A. Tseytlin, Two-loop world-sheet corrections in \(AdS_5 \times S^5\) superstring. JHEP 0707, 056 (2007). arXiv:0704.3638

    Article  ADS  Google Scholar 

  70. V. Forini, Quark-antiquark potential in AdS at one loop. JHEP 1011, 079 (2010). arXiv:1009.3939

    Article  ADS  MATH  Google Scholar 

  71. A. Miwa, Broken zero modes of a string world sheet and a correlation function between a 1/4 BPS Wilson loop and a 1/2 BPS local operator. Phys. Rev. D 91, 106003 (2015). arXiv:1502.04299

  72. V. Forini, A.A. Tseytlin, E. Vescovi, Perturbative computation of string one-loop corrections to Wilson loop minimal surfaces in \(AdS_5 \times S^5\), JHEP 1703, 003 (2017), arXiv:1702.02164

  73. V. Forini, V.G.M. Puletti, L. Griguolo, D. Seminara, E. Vescovi, Remarks on the geometrical properties of semiclassically quantized strings. J. Phys. A 48, 475401 (2015). arXiv:1507.01883

  74. V. Forini, V. Giangreco M. Puletti, L. Griguolo, D. Seminara, E. Vescovi, Precision calculation of 1/4-BPS Wilson loops in \(AdS_5\times S^5\). JHEP 1602, 105 (2016). arXiv:1512.00841

  75. A. Dekel, T. Klose, Correlation function of circular wilson loops at strong coupling. JHEP 1311, 117 (2013). arXiv:1309.3203

    Article  ADS  Google Scholar 

  76. S. Frolov, I. Park, A.A. Tseytlin, On one-loop correction to energy of spinning strings in \(S^5\). Phys. Rev. D 71, 026006 (2005). arXiv:hep-th/0408187

    Article  ADS  Google Scholar 

  77. C. Ferreira, J.L. López, Asymptotic expansions of the Hurwitz-Lerch zeta function. J. Math. Anal. Appl. 298, 210 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  78. A. Faraggi, L.A. Pando Zayas, The spectrum of excitations of holographic Wilson loops, JHEP 1105, 018 (2011). arXiv:1101.5145

  79. J. Aguilera-Damia, A. Faraggi, L.A. Pando Zayas, V. Rathee, G.A. Silva, D. Trancanelli, E. Vescovi, in preparation

    Google Scholar 

  80. S. Giombi, R. Ricci, R. Roiban, A. Tseytlin, C. Vergu, Quantum \(AdS_5 \times S^5\) superstring in the AdS light-cone gauge. JHEP 1003, 003 (2010). arXiv:0912.5105

    Article  ADS  MATH  Google Scholar 

  81. T. McLoughlin, R. Roiban, A.A. Tseytlin, Quantum spinning strings in \(AdS_4\times \mathbb{CP}^3\): Testing the Bethe Ansatz proposal. JHEP 0811, 069 (2008). arXiv:0809.4038

    Article  ADS  Google Scholar 

  82. N. Sakai, Y. Tanii, Supersymmetry in two-dimensional anti-de sitter space. Nucl. Phys. B 258, 661 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  83. G.V. Dunne, K. Kirsten, Functional determinants for radial operators. J. Phys. A 39, 11915 (2006). arXiv:hep-th/0607066

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. K. Kirsten, Functional determinants in higher dimensions using contour integrals. arXiv:1005.2595

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Vescovi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vescovi, E. (2017). Towards Precision Holography for Latitude Wilson Loops. In: Perturbative and Non-perturbative Approaches to String Sigma-Models in AdS/CFT. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63420-3_5

Download citation

Publish with us

Policies and ethics