Skip to main content

New Methods of Axion Dark Matter Detection

  • Chapter
  • First Online:
  • 444 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, I consider new linear effects of axion (pseudoscalar) dark matter in atoms, molecules, nuclei and neutrons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The density of axions produced in the early Universe depends on the order of cosmological events, in particular whether the Peccei–Quinn symmetry is broken prior to or following cosmic inflation. In the latter case, there may be additional contributions to the axion density of the same order as in Eq. (2.1.3) from the formation and decay of axionic topological defects, such as cosmic strings and domain walls [43, 44].

  2. 2.

    We note that the effect of axion DM with \(m_a \ll 10^{-16}\) eV on the primordial \(^4\)He abundance via the alteration of the neutron decay rate (which was neglected in [57]) is comparable to that via the alteration of the neutron-proton mass difference at the time of weak interaction freeze-out. Account of this effect strengthens the bounds presented in [57] for \(m_a \ll 10^{-16}\) eV by a factor of \(\approx 2\), see [58] and Sect. 3.2.3 for more details.

  3. 3.

    If one instead considers a time-dependent applied electric field, which generates a magnetic field on account of Maxwell’s equations of electrodynamics, then this magnetic field may interact with magnetic and anapole moments of the electron. However, we stress that this is not the interaction of the electric field with the electron EDM. Also, for an oscillating applied electric field, corrections are proportional to the electric field oscillation frequency \(\omega \) and are suppressed by the small parameter \(\omega /m_e \ll 1\).

References

  1. Y.V. Stadnik, V.V. Flambaum, Phys. Rev. D 89, 043522 (2014)

    Article  ADS  Google Scholar 

  2. B.M. Roberts, Y.V. Stadnik, V.A. Dzuba, V.V. Flambaum, N. Leefer, D. Budker, Phys. Rev. Lett. 113, 081601 (2014)

    Article  ADS  Google Scholar 

  3. B.M. Roberts, Y.V. Stadnik, V.A. Dzuba, V.V. Flambaum, N. Leefer, D. Budker, Phys. Rev. D 90, 096005 (2014)

    Article  ADS  Google Scholar 

  4. Y.V. Stadnik, V.V. Flambaum, Eur. Phys. J. C 75, 110 (2015)

    Article  ADS  Google Scholar 

  5. V.V. Flambaum, B.M. Roberts, Y.V. Stadnik, Phys. Rev. D. arXiv:1507.05265

  6. T.D. Lee, C.N. Yang, Phys. Rev. 104, 254 (1956)

    Article  ADS  Google Scholar 

  7. C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes, R.P. Hudson, Phys. Rev. 105, 1413 (1957)

    Article  ADS  Google Scholar 

  8. Y.B. Zel’dovich, Zh. Eksp. Teor. Fiz. 33, 1531 (1957); JETP 6, 1184 (1957)

    Google Scholar 

  9. I.B. Khriplovich, Pis’ma Zh. Eksp. Teor. Fiz. 20, 686 (1974); JETP Lett. 20, 315 (1974)

    Google Scholar 

  10. M.-A. Bouchiat, C.C. Bouchiat, Phys. Lett. B 48, 111 (1974)

    Article  ADS  Google Scholar 

  11. L.M. Barkov, M.S. Zolotorev, JETP Lett. 27, 357 (1978)

    ADS  Google Scholar 

  12. V.V. Flambaum, I.B. Khriplovich, JETP 52, 835 (1980)

    ADS  Google Scholar 

  13. M.-A. Bouchiat, J. Guena, L.R. Hunter, L. Pottier, Phys. Lett. B 117, 358 (1982)

    Article  ADS  Google Scholar 

  14. C.S. Wood et al., Science 275, 1759 (1997)

    Article  Google Scholar 

  15. K. Tsigutkin, D.R. Dounas-Frazer, A. Family, J.E. Stalnaker, V.V. Yashchuk, D. Budker, Phys. Rev. Lett. 103, 071601 (2009)

    Article  ADS  Google Scholar 

  16. C.Y. Prescott et al., Phys. Lett. B 77, 347 (1978)

    Article  ADS  Google Scholar 

  17. A.A. Belavin, A.M. Polyakov, A.S. Schwartz, Yu.S. Tyupkin, Phys. Lett. B 59, 85 (1975)

    Google Scholar 

  18. G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976)

    Google Scholar 

  19. R. Jackiw, C. Rebbi, Phys. Rev. Lett. 37, 172 (1976)

    Article  ADS  Google Scholar 

  20. C.G. Jr, R.F. Callan, D.J. Dashen, Gross. Phys. Lett. B 63, 334 (1976)

    Google Scholar 

  21. R.D. Peccei, in Proceedings of the 1981 International Conference on Neutrino Physics and Astrophysics, eds. By R.J. Cence, E. Ma, A. Roberts, vol. I (University of Hawaii, Honolulu, 1981)

    Google Scholar 

  22. C.A. Baker et al., Phys. Rev. Lett. 97, 131801 (2006); Phys. Rev. Lett. 98, 149102 (2007)

    Google Scholar 

  23. J.M. Pendlebury et al., Phys. Rev. D 92, 092003 (2015)

    Article  ADS  Google Scholar 

  24. B. Graner, Y. Chen, E.G. Lindahl, B.R. Heckel, Phys. Rev. Lett. 116, 161601 (2016)

    Article  ADS  Google Scholar 

  25. R.D. Peccei, H.R. Quinn, Phys. Rev. Lett. 38, 1440 (1977)

    Article  ADS  Google Scholar 

  26. R.D. Peccei, H.R. Quinn, Phys. Rev. D 16, 1791 (1977)

    Article  ADS  Google Scholar 

  27. J. Preskill, M.B. Wise, F. Wilczek, Phys. Lett. B 120, 127 (1983)

    Article  ADS  Google Scholar 

  28. L.F. Abbott, P. Sikivie, Phys. Lett. B 120, 133 (1983)

    Article  ADS  Google Scholar 

  29. M. Dine, W. Fischler, Phys. Lett. B 120, 137 (1983)

    Article  ADS  Google Scholar 

  30. S. Weinberg, Phys. Rev. Lett. 40, 223 (1978)

    Article  ADS  Google Scholar 

  31. F. Wilczek, Phys. Rev. Lett. 40, 279 (1978)

    Article  ADS  Google Scholar 

  32. J.E. Kim, Phys. Rev. Lett. 43, 103 (1979)

    Article  ADS  Google Scholar 

  33. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 166, 493 (1980)

    Article  ADS  Google Scholar 

  34. A.R. Zhitnitsky, Yad. Fiz. 31, 1024 (1980); Sov. J. Nucl. Phys. 31, 529 (1980)

    Google Scholar 

  35. M. Dine, W. Fischler, M. Srednicki, Phys. Lett. B 104, 199 (1981)

    Article  ADS  Google Scholar 

  36. P.-H. Gu, M. Lindner, Phys. Lett. B 698, 40 (2011)

    Article  ADS  Google Scholar 

  37. A. Celis, J. Fuentes-Martin, H. Serodio, JHEP 12, 167 (2014)

    Article  ADS  Google Scholar 

  38. A. Celis, J. Fuentes-Martin, H. Serodio, Phys. Lett. B 741, 117 (2015)

    Article  Google Scholar 

  39. Y.H. Anh, Phys. Rev. D 91, 056005 (2015)

    Article  ADS  Google Scholar 

  40. S. Weinberg, Phys. Rev. Lett. 59, 2607 (1987)

    Article  ADS  Google Scholar 

  41. A.D. Linde, Phys. Lett. B 201, 437 (1988)

    Article  ADS  Google Scholar 

  42. M.P. Hertzberg, M. Tegmark, F. Wilczek, Phys. Rev. D 78, 083507 (2008)

    Article  ADS  Google Scholar 

  43. P. Sikivie, Lect. Notes Phys. 741, 19 (2008)

    Article  ADS  Google Scholar 

  44. M. Kawasaki, K. Saikawa, T. Sekiguchi, Phys. Rev. D 91, 065014 (2015)

    Article  ADS  Google Scholar 

  45. E. Witten, Phys. Lett. B 149, 351 (1985)

    Article  ADS  Google Scholar 

  46. J.P. Conlon, JHEP 0605, 078 (2006)

    Article  ADS  Google Scholar 

  47. P. Svrcek, E. Witten, JHEP 0606, 051 (2006)

    Article  ADS  Google Scholar 

  48. A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, J. March-Russell, Phys. Rev. D 81, 123530 (2010)

    Article  ADS  Google Scholar 

  49. P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo, A. Ringwald, JCAP 06, 013 (2012)

    Article  ADS  Google Scholar 

  50. J.E. Kim, G. Carosi, Rev. Mod. Phys. 82, 557 (2010)

    Article  ADS  Google Scholar 

  51. M. Srednicki, Nucl. Phys. B 260, 689 (1985)

    Article  ADS  Google Scholar 

  52. M.I. Vysotsky, Y.B. Zel’dovich, M.Y. Khlopov, V.M. Chechetkin, Pis’ma. Zh. Eksp. Teor. Fiz. 27, 533 (1978)

    Google Scholar 

  53. D.A. Dicus, E.W. Kolb, V.L. Teplitz, R.V. Wagoner, Phys. Rev. D 18, 1829 (1978)

    Article  ADS  Google Scholar 

  54. G.G. Raffelt, Lect. Notes Phys. 741, 51 (2008)

    Article  ADS  Google Scholar 

  55. A.H. Corsico, O.G. Benvenuto, L.G. Althaus, J. Isern, E. Garcia-Berro, New Astron. 6, 197 (2001)

    Article  ADS  Google Scholar 

  56. L. Ubaldi, Phys. Rev. D 81, 025011 (2010)

    Article  ADS  Google Scholar 

  57. K. Blum, R.T. D’Agnolo, M. Lisanti, B.R. Safdi, Phys. Lett. B 737, 30 (2014)

    Article  ADS  Google Scholar 

  58. Y.V. Stadnik, V.V. Flambaum, Phys. Rev. Lett. 115, 201301 (2015)

    Article  ADS  Google Scholar 

  59. P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983)

    Article  ADS  Google Scholar 

  60. S.J. Asztalos et al., ADMX collaboration. Phys. Rev. Lett. 104, 041301 (2010)

    Article  ADS  Google Scholar 

  61. M. Arik et al., CAST collaboration. Phys. Rev. Lett. 112, 091302 (2014)

    Article  ADS  Google Scholar 

  62. F.T. Avignone et al., Phys. Rev. D 35, 2752 (1987)

    Article  ADS  Google Scholar 

  63. A.V. Derbin, A.I. Egorov, I.A. Mitropol’sky, V.N. Muratova, D.A. Semenov, E.V. Unzhakov, Eur. Phys. J. C 62, 755 (2009)

    Article  ADS  Google Scholar 

  64. A. Derevianko, V.A. Dzuba, V.V. Flambaum, M. Pospelov, Phys. Rev. D 82, 065006 (2010)

    Article  ADS  Google Scholar 

  65. A.V. Derbin, I.S. Drachnev, A.S. Kayunov, V.N. Muratova, JETP Lett. 95, 339 (2012)

    Article  ADS  Google Scholar 

  66. A.S. Chou et al., GammeV collaboration. Phys. Rev. Lett. 100, 080402 (2008)

    Article  ADS  Google Scholar 

  67. R. Bahre et al., ALPS-II collaboration. JINST 8, T09001 (2013)

    Article  ADS  Google Scholar 

  68. M. Betz et al., CROWS collaboration. Phys. Rev. D 88, 075014 (2013)

    Article  ADS  Google Scholar 

  69. R. Battesti et al., BMV collaboration. Eur. Phys. J. D 46, 323 (2007)

    Article  ADS  Google Scholar 

  70. F. Della Valle et al., PVLAS collaboration. New J. Phys. 15, 053026 (2013)

    Article  ADS  Google Scholar 

  71. P.W. Graham, I.G. Irastorza, S.K. Lamoreaux, A. Lindner, K.A. van Bibber, Annu. Rev. Nucl. Part. Sci. 65, 485 (2015)

    Article  ADS  Google Scholar 

  72. G. Vasilakis, J.M. Brown, T.W. Kornack, M.V. Romalis, Phys. Rev. Lett. 103, 261801 (2009)

    Article  ADS  Google Scholar 

  73. N.F. Ramsey, Phys. A 96, 285 (1979)

    Article  Google Scholar 

  74. B.R. Heckel, W.A. Terrano, E.G. Adelberger, Phys. Rev. Lett. 111, 151802 (2013)

    Article  ADS  Google Scholar 

  75. V.V. Flambaum, Talk presented at the 9th Patras Workshop on Axions, WIMPs and WISPs, Schloss Waldthausen, Mainz, Germany, 24th June 2013, http://axion-wimp2013.desy.de/e201031/

  76. P.W. Graham, S. Rajendran, Phys. Rev. D 88, 035023 (2013)

    Article  ADS  Google Scholar 

  77. L.M. Krauss, J. Moody, F. Wilczeck, D.E. Morris, Preprint: HUTP-85/A006 (1985)

    Google Scholar 

  78. R. Barbieri, M. Cerdonio, G. Fiorentini, S. Vitale, Phys. Lett. B 226, 357 (1989)

    Article  ADS  Google Scholar 

  79. A.I. Kakhizde, I.V. Kolokolov, JETP 72, 598 (1991)

    Google Scholar 

  80. P.V. Vorob’ev, A.I. Kakhizde, I.V. Kolokolov, Phys. Atom. Nucl. 58, 959 (1995)

    ADS  Google Scholar 

  81. V.A. Kostelecky, C.D. Lane, Phys. Rev. D 60, 116010 (1999)

    Article  ADS  Google Scholar 

  82. NASA, LAMBDA—coordinate conversions, last updated 2014, http://lambda.gsfc.nasa.gov/toolbox/tb_coordconv.cfm

  83. E. Merzbacher, Quantum Mechanics, 3rd edn. (Wiley, New Jersey, 1998)

    MATH  Google Scholar 

  84. J.J. Sakurai, J. Napolitano, Modern Quantum Mechanics, 2nd edn. (Addison-Wesley, San Fransisco, 2011)

    Google Scholar 

  85. V.V. Flambaum, I.B. Khriplovich, O.P. Sushkov, Phys. Lett. B 146, 367 (1984)

    Article  ADS  Google Scholar 

  86. J. Mitroy, M.S. Safronova, C.W. Clark, J. Phys. B 43, 202001 (2010)

    Article  ADS  Google Scholar 

  87. L.I. Schiff, Phys. Rev. 132, 2194 (1963)

    Article  ADS  Google Scholar 

  88. V.V. Flambaum, I.B. Khriplovich, O.P. Sushkov, Phys. Lett. B 162, 213 (1985)

    Article  ADS  Google Scholar 

  89. V.A. Dzuba, V.V. Flambaum, J.S.M. Ginges, M.G. Kozlov, Phys. Rev. A 66, 012111 (2002)

    Article  ADS  Google Scholar 

  90. V.A. Dzuba, V.V. Flambaum, S.G. Porsev, Phys. Rev. A 80, 032120 (2009)

    Article  ADS  Google Scholar 

  91. N. Auerbach, V.V. Flambaum, V. Spevak, Phys. Rev. Lett. 76, 4316 (1996)

    Article  ADS  Google Scholar 

  92. V. Spevak, N. Auerbach, V.V. Flambaum, Phys. Rev. C 56, 1357 (1997)

    Article  ADS  Google Scholar 

  93. V.A. Dzuba, V.V. Flambaum, J.S.M. Ginges, Phys. Rev. A 61, 062509 (2000)

    Article  ADS  Google Scholar 

  94. V.V. Flambaum, I.B. Khriplovich, O.P. Sushkov, JETP 60, 873 (1984); Zh. Eksp. Teor. Fiz. 87, 1521 (1984)

    Google Scholar 

  95. V.F. Dmitriev, I.B. Khriplovich, V.B. Telitsin, Phys. Rev. C 50, 2358 (1994)

    Article  ADS  Google Scholar 

  96. V.V. Flambaum, A. Kozlov, Phys. Rev. C 85, 068502 (2012)

    Article  ADS  Google Scholar 

  97. V.V. Flambaum, D. DeMille, M.G. Kozlov, Phys. Rev. Lett. 113, 103003 (2014)

    Article  ADS  Google Scholar 

  98. P.W. Graham, S. Rajendran, Phys. Rev. D 84, 055013 (2011)

    Article  ADS  Google Scholar 

  99. R.J. Crewther, P. di Vecchia, G. Veneziano, E. Witten, Phys. Lett. B 88, 123 (1979); Phys. Lett. B 91, 487 (1980)

    Google Scholar 

  100. E. Mereghetti, W.H. Hockings, U. van Kolck, Annals Phys. 325, 2363 (2010)

    Article  ADS  Google Scholar 

  101. J. de Vries, E. Mereghetti, R.G.E. Timmermans, U. van Kolck, Phys. Rev. Lett. 107, 091804 (2011)

    Article  ADS  Google Scholar 

  102. J. Bsaisou et al., JHEP 03, 104 (2015); JHEP 05, 083 (2015)

    Google Scholar 

  103. J. de Vries, E. Mereghetti, A. Walker-Loud, Phys. Rev. C 92, 045201 (2015)

    Article  ADS  Google Scholar 

  104. M. Pospelov, A. Ritz, Phys. Rev. Lett. 83, 2526 (1999)

    Article  ADS  Google Scholar 

  105. V.F. Dmitriev, R.A. Sen’kov, Phys. At. Nucl. 66, 1940 (2003)

    Article  Google Scholar 

  106. V.F. Dmitriev, R.A. Sen’kov, N. Auerbach, Phys. Rev. C 71, 035501 (2005)

    Article  ADS  Google Scholar 

  107. J.H. de Jesus, J. Engel, Phys. Rev. C 72, 045503 (2005)

    Article  ADS  Google Scholar 

  108. S. Ban, J. Dobaczewski, J. Engel, A. Shukla, Phys. Rev. C 82, 015501 (2010)

    Article  ADS  Google Scholar 

  109. J. Dobaczewski, J. Engel, Phys. Rev. Lett. 94, 232502 (2005)

    Article  ADS  Google Scholar 

  110. C.T. Hill, Phys. Rev. D 91, 111702(R) (2015)

    Article  ADS  Google Scholar 

  111. P.G.H. Sandars, Phys. Lett. 14, 194 (1965)

    Article  ADS  Google Scholar 

  112. V.V. Flambaum, Yad. Fiz. 24, 383 (1976); Sov. J. Nucl. Phys. 24, 199 (1976)

    Google Scholar 

  113. J.J. Hudson, D.M. Kara, I.J. Smallman, B.E. Sauer, M.R. Tarbutt, E.A. Hinds, Nature 473, 493 (2011)

    Article  ADS  Google Scholar 

  114. J. Baron et al., Science 343, 269 (2014)

    Article  ADS  Google Scholar 

  115. R.H. Parker et al., Phys. Rev. Lett. 114, 233002 (2015)

    Article  ADS  Google Scholar 

  116. MIXed Collaboration, Experimental search for the electric dipole moment of Xe-129, http://www.ag-heil.physik.uni-mainz.de/60_ENG_HTML.php

  117. C.J. Berglund, L.R. Hunter, D. Krause Jr., E.O. Prigge, M.S. Ronfeldt, S.K. Lamoreaux, Phys. Rev. Lett. 75, 1879 (1995)

    Article  ADS  Google Scholar 

  118. F. Cane et al., Phys. Rev. Lett. 93, 230801 (2004)

    Article  ADS  Google Scholar 

  119. B.R. Heckel, C.E. Cramer, T.S. Cook, E.G. Adelberger, S. Schlamminger, U. Schmidt, Phys. Rev. Lett. 97, 021603 (2006); Phys. Rev. D 78, 092006 (2008)

    Google Scholar 

  120. I. Altarev et al., Phys. Rev. Lett. 103, 081602 (2009); Europhys. Lett. 92, 51001 (2010)

    Google Scholar 

  121. J.M. Brown, S.J. Smullin, T.W. Kornack, M.V. Romalis, Phys. Rev. Lett. 105, 151604 (2010)

    Article  ADS  Google Scholar 

  122. S.K. Peck et al., Phys. Rev. A 86, 012109 (2012)

    Article  ADS  Google Scholar 

  123. F. Allmendinger et al., Phys. Rev. Lett. 112, 110801 (2014)

    Article  ADS  Google Scholar 

  124. B.J. Venema, P.K. Majumder, S.K. Lamoreaux, B.R. Heckel, E.N. Fortson, Phys. Rev. Lett. 68, 135 (1992)

    Article  ADS  Google Scholar 

  125. C. Baker et al., Nucl. Instr. Meth. Phys. Res. A 736, 184 (2014)

    Article  ADS  Google Scholar 

  126. D. Budker, P.W. Graham, M. Ledbetter, S. Rajendran, A.O. Sushkov, Phys. Rev. X 4, 021030 (2014)

    Google Scholar 

  127. V. Flambaum, arXiv:physics/0309107

  128. V.V. Flambaum, A.F. Tedesco, Phys. Rev. C 73, 055501 (2006)

    Article  ADS  Google Scholar 

  129. V. Flambaum, S. Lambert, M. Pospelov, Phys. Rev. D 80, 105021 (2009)

    Article  ADS  Google Scholar 

  130. J.C. Berengut, V.V. Flambaum, E.M. Kava, Phys. Rev. A 84, 042510 (2011)

    Article  ADS  Google Scholar 

  131. D. Kimball, New J. Phys. 17, 073008 (2015)

    Article  ADS  Google Scholar 

  132. N.J. Stone, At. Data Nucl. Data Tables 90, 75 (2005)

    Article  ADS  Google Scholar 

  133. J. Engel, Phys. Lett. B 264, 114 (1991)

    Article  ADS  Google Scholar 

  134. M.T. Ressell, D.J. Dean, Phys. Rev. C 56, 535 (1997)

    Article  ADS  Google Scholar 

  135. P. Toivanen, M. Kortelainen, J. Suhonen, J. Toivanen, Phys. Rev. C 79, 044302 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yevgeny V. Stadnik .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Stadnik, Y.V. (2017). New Methods of Axion Dark Matter Detection. In: Manifestations of Dark Matter and Variations of the Fundamental Constants in Atoms and Astrophysical Phenomena. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63417-3_2

Download citation

Publish with us

Policies and ethics