Skip to main content

An Experimental Study to Guide AFM-Based TBN of Nanochannels

  • Conference paper
  • First Online:
Micro and Nanomechanics, Volume 5

Abstract

Tip-based nanomanufacturing (TBN) approach generally involves the use of nanoscale tool tips in various nanomanufacturing processes such as machining, patterning, and assembling. AFM-based TBN has been applied to fabricate various micro/nanodevices. In AFM-based TBN process, the AFM tip is used as a tool for material removal or surface modification of nanoscale materials. To fabricate a desirable nanostructure, the AFM-based TBN parameters, i.e. applied load, tip speed, feed rate, scratching direction, tip geometry, tip radius, and number of scratching cycles, must be carefully chosen. These parameters have major effects on the depth, width, chip formation, and surface roughness of the machined surface. In order to control AFM-based TBN process efficiently, there is a need to conduct a more focused study of the effects of these different parameters on the process performance and outcome. This is achieved by experimentally validating a MD simulation model of AFM-based nanomachining, and using it to conduct parametric studies to guide AFM-based TBN. In this work, a 3D MD model with a larger domain size was developed and used to gain a unique insight into the AFM-based TBN process. The parametric studies conducted using both MD model simulations and AFM experiments are presented. In addition, AFM-based TBN is used with photolithography to fabricate a nanofluidic device for medical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fischer-Cripps, A.C.: Nanoindentation. Springer, New York (2002)

    Book  Google Scholar 

  2. Nie, X., Zhang, P., Weiner, A.M., Cheng, Y.T.: Nanoscale wear and machining behavior of nanolayer interfaces. Nano Lett. 5, 1993–1996 (2005)

    Article  Google Scholar 

  3. Li, X., Gao, H., Murphy, C.J., Caswell, K.K.: Nanoindentation of silver nanowires. Nano Lett. 3, 1495–1498 (2003)

    Article  Google Scholar 

  4. Li, X., Nardi, P., Baek, C.W., Kim, J.M., Kim, Y.K.: Direct nanomechanical machining of gold nanowires using a nanoindenter and an atomic force microscope. J. Micromech. Microeng. 15, 551–556 (2005)

    Article  Google Scholar 

  5. Yan, Y.D., Sun, T., Zhao, X.S., Hu, Z.J., Dong, S.: Fabrication of microstructures on the surface of a micro/hollow target ball by AFM. J. Micromech. Microeng. 18, 035002 (2008)

    Article  Google Scholar 

  6. Fang, T., Weng, C., Chang, J.: Machining characterization of nano-lithography process using atomic force microscopy. Nanotechnology. 11, 181–187 (2000)

    Article  Google Scholar 

  7. Chen, Y.J., Hsu, J.H., Lin, H.N.: Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process. Nanotechnology. 16, 1112–1115 (2005)

    Article  Google Scholar 

  8. Hsu, J.H., Huang, M.H., Lin, H.H., Lin, H.N.: Selective growth of silica nanowires on nickel nanostructures created by atomic force microscopy nanomachining. Nanotechnology. 17, 170–173 (2006)

    Article  Google Scholar 

  9. Ahn, B.W., Lee, S.H.: Characterization and acoustic emission monitoring of AFM nanomachining. J. Micromech. Microeng. 19, 045028 (2009)

    Article  Google Scholar 

  10. Mao, Y.T., Kuo, K.C., Tseng, C.E., Huang, J.Y., Lai, Y.C., Yen, J.Y., Lee, C.K., Chuang, W.L.: Research on three dimensional machining effects using atomic force microscope. Rev. Sci. Instrum. 80, 065105 (2009)

    Article  Google Scholar 

  11. Jay Guo, L., Cheng, X., Chou, C.F.: Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching. Nano Lett. 4, 69–73 (2004)

    Article  Google Scholar 

  12. Sinha, P.M., Valco, G., Sharma, S., Liu, X., Ferrari, M.: Nanoengineered device for drug delivery application. Nanotechnology. 15, S585 (2004)

    Article  Google Scholar 

  13. Daiguji, H., Yang, P., Szeri, A.J., Majumdar, A.: Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett. 4, 2315–2321 (2005)

    Article  Google Scholar 

  14. Sun, T., Yan, Y.D., Xia, J.F., Dong, S., Liang, Y.C., Cheng, K.: Research on micro machining using AFM diamond tip. Key Eng. Mater. 259-260, 577–581 (2004)

    Article  Google Scholar 

  15. Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  MATH  Google Scholar 

  16. Plimpton, S.J., Pollock, R., Stevens, M.: Particle-mesh Ewald and rRESPA for parallel molecular dynamics simulations. Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis (1997)

    Google Scholar 

  17. Daw, M., Baskes, M.: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B. 29, 6443–6453 (1984)

    Article  Google Scholar 

  18. Adams, J., Foiles, S.M., Wolfer, W.G.: Self-Diffusion and Impurity Diffusion of FCC Metals Using the Embedded Atom Method. Springer, Boston (1989)

    Book  Google Scholar 

  19. Foiles, S., Baskes, M., Daw, M.: Embedded-atom-method functions for the fcc metals cu, ag, au, ni, pd, pt, and their alloys. Phys. Rev. B. 33, 7983–7991 (1986)

    Article  Google Scholar 

  20. Jacobsen, K., Norskov, J., Puska, M.: Interatomic interactions in the effective medium theory. Phys. Rev. B. 35, 7423–7442 (1987)

    Article  Google Scholar 

  21. Tersoff, J.: Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B. 39, 6991–7000 (1988)

    Article  Google Scholar 

  22. Torrens, I.: Interatomic Potentials. Academic, New York (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rapeepan Promyoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Promyoo, R., El-Mounayri, H., Agarwal, M. (2018). An Experimental Study to Guide AFM-Based TBN of Nanochannels. In: Starman, L., Hay, J. (eds) Micro and Nanomechanics, Volume 5. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-63405-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63405-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63404-3

  • Online ISBN: 978-3-319-63405-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics