Skip to main content

Energy Balance During Elettrolysis and Cavitation Experiments

  • Conference paper
  • First Online:
  • 574 Accesses

Abstract

Literature presents several cases of nuclear anomalies occurring in condensed matter, during fracture of solids, cavitation of liquids, and electrolysis. Previous papers by the authors have recently shown that, on the surface of the electrodes exposed to electrolysis, visible cracks and compositional changes are strictly related to nuclear particle emissions. In particular, a mechanical interpretation of the phenomenon was provided accounting the reactions due to hydrogen embrittlement effect. On the other hand, the authors have recently reported that appreciable neutron emissions far from the background level take place in hydrodynamic cavitation. In the present paper, specific measurements have been conducted during two experimental campaigns in order to evaluate the energy balance and the heat generation and its possible correlation to the same nuclear origin during both electrolysis and cavitation phenomena.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Borghi, DC., Giori, DC., Dall'Olio, A.: Experimental Evidence on the Emission of Neutrons from Cold Hydrogen Plasma. Proceedings of the International Workshop on Few-body Problems in Low-energy Physics, Alma-Ata, Kazakhstan, 147–154 (1992); Unpublished Communication (1957); Comunicacao n. 25 do CENUFPE, Recife Brazil (1971)

    Google Scholar 

  2. Diebner, K.: Fusionsprozesse mit Hilfe konvergenter Stosswellen – einige aeltere und neuere Versuche und Ueberlegungen. Kerntechnik. 3, 89–93 (1962)

    Google Scholar 

  3. Winterberg, F.: Autocatalytic fusion–fission implosions. Atomenergie-Kerntechnik. 44, 146 (1984)

    Google Scholar 

  4. Preparata, G.: Some theories of cold fusion: a review. Fusion Tech. 20, 82 (1991)

    Article  Google Scholar 

  5. Preparata, G.: A new look at solid-state fractures, particle emissions and «cold» nuclear fusion. Il Nuovo Cimento. 104A, 1259–1263 (1991)

    Google Scholar 

  6. Mills, R.L., Kneizys, P.: Excess heat production by the electrolysis of an aqueous potassium carbonate electrolyte and the implications for cold fusion. Fusion Technol. 20, 65 (1991)

    Article  Google Scholar 

  7. Fleischmann, M., Pons, S., Preparata, G.: Possible theories of cold fusion. Nuovo Cimento. Soc. Ital. Fis. A. 107, 143 (1994)

    Article  Google Scholar 

  8. Arata, Y., Zhang, Y.: Achievement of solid-state plasma fusion (“cold-fusion”). Proc. Jpn Acad. 71(Ser. B), 304–309 (1995)

    Article  Google Scholar 

  9. Monti, R.A.: Low energy nuclear reactions: experimental evidence for the alpha extended model of the atom. J. New Energy. 1(3), 131 (1996)

    Google Scholar 

  10. Mizuno, T.: Nuclear Transmutation: The Reality of Cold Fusion. Infinite Energy Press. (1998)

    Google Scholar 

  11. Mizuno, T., et al.: Production of heat during plasma electrolysis. Jpn. J. Appl. Phys. A. 39, 6055 (2000)

    Article  Google Scholar 

  12. Fujii, M.F., et al.: Neutron emission from fracture of piezoelectric materials in deuterium atmosphere. Jpn. J. Appl. Phys. 41, 2115–2119 (2002)

    Article  Google Scholar 

  13. Mosier-Boss, P.A., et al.: Use of CR-39 in Pd/D co-deposition experiments. Eur. Phys. J. Appl. Phys. 40, 293–303 (2007)

    Article  Google Scholar 

  14. Mosier-Boss, P.A., et al.: Comparison of Pd/D co-deposition and DT neutron generated triple tracks observed in CR-39 detectors. Eur. Phys. J. Appl. Phys. 51(2), 20901–20911 (2010)

    Article  Google Scholar 

  15. Kanarev, M., Mizuno, T.: Cold fusion by plasma electrolysis of water. New Energy Technol. 1, 5–10 (2002)

    Google Scholar 

  16. Carpinteri, A., Borla, O., Goi, A., Manuello, A., Veneziano D.: Cold nuclear fusion explained by hydrogen embrittlement and piezonuclear fissions in the metallic electrodes – Part I: Ni-Fe and Co-Cr electrodes. In: Acoustic, Electromagnetic, Neutron Emissions from Fracture and Earthquakes, Chapter 8, pp. 99–121. Springer, Heidelberg (2015)

    Google Scholar 

  17. Carpinteri, A., Borla, O., Goi, A., Manuello, A., Veneziano D.: Cold nuclear fusion explained by hydrogen embrittlement and piezonuclear fissions in the metallic electrodes – Part II: Pd an Ni electrodes. In: Acoustic, Electromagnetic, eutron Emissions from Fracture and Earthquakes, Chapter 9, pp. 123–134. Springer, Heidelberg (2015)

    Google Scholar 

  18. Chivate, M.M., Pandit, A.B.: Effect of sonic and hydrodynamic cavitation on aqueous polymeric solutions. Indian Chem. Eng. 35, 52–57 (1993)

    Google Scholar 

  19. Kalumuck, K.M., Chahine, G.L.: The use of cavitating jets to oxidize organic compounds in water. J. Fluid Eng. 122, 464–470 (2000)

    Article  Google Scholar 

  20. Sivakumar, M., Pandit, A.B.: Wastewater treatment: a novel energy efficient hydrodynamic cavitational technique. Ultrason. Sonochem. 9, 123–131 (2002)

    Article  Google Scholar 

  21. Ambulgekar, G.V., Samant, S.D., Pandit, A.B.: Oxidation of alkylarenes using aqueous potassium permanganate under cavitation: comparison of acoustic and hydrodynamic techniques. Ultrason. Sonochem. 11, 191–196 (2004)

    Article  Google Scholar 

  22. Moser, W.R., Marshik, B.J., Kingsley, J., Lemberger, M., Willette, R., Chan, A., Sunstrom, J.E., Boye, A.: The synthesis and characterization of solid-state materials produced by high shear-hydrodynamic cavitation. J. Mater. Res. 10, 2322–2335 (1195)

    Article  Google Scholar 

  23. Manuello, A., Malvano, R., Borla, O., Palumbo, A., Carpinteri, A.: Neutron Emissions from Hydrodynamic Cavitation. Proceedings of the 2015 Annual Conference on Experimental and Applied Mechanics Fracture, Fatigue, Failure and Damage Evolution, vol. 8, pp. 175–182 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Mr. A. Goi the owner of the electrolytic device. Special thanks are due to Prof. C. Baiocchi and Dr. G. Mariella for the solution preparations and the ICP-MS analysed before and during the experimental campaign. Mr. F. Alasia and Eng. R Malvano are gratefully acknowledged their support in the hydraulic circuit construction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Manuello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Carpinteri, A., Borla, O., Manuello, A., Niccolini, G. (2018). Energy Balance During Elettrolysis and Cavitation Experiments. In: Starman, L., Hay, J. (eds) Micro and Nanomechanics, Volume 5. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-63405-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63405-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63404-3

  • Online ISBN: 978-3-319-63405-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics