Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 418 Accesses

Abstract

Having shown the power of applying 2DES to pentacene, I now turn to biological light harvesting complexes.

What we observe is not nature itself, but nature exposed to our method of questioning.

Werner Heisenberg

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ishizaki, A., Calhoun, T.R., Schlau-Cohen, G.S., Fleming, G.R.: Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Phys. Chem. Chem. Phys. 12, 7319–7337 (2010)

    Google Scholar 

  2. Christensson, N., Kauffmann, H.F., Pullerits, T., Mančal, T.: Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116, 7449–7454 (2012)

    Google Scholar 

  3. Butkus, V., Zigmantas, D., Abramavicius, D., Valkunas, L.: Distinctive character of electronic and vibrational coherences in disordered molecular aggregates. Chem. Phys. Lett. 587, 93–98 (2013)

    Google Scholar 

  4. Romero, E., Augulis, R., Novoderezhkin, V.I., Ferretti, M., Thieme, J., Zigmantas, D., van Grondelle, R.: Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10, 676–682 (2014)

    Google Scholar 

  5. Fuller, F.D., Pan, J., Gelzinis, A., Butkus, V., Senlik, S.S., Wilcox, D.E., Yocum, C.F., Valkunas, L., Abramavicius, D., Ogilvie, J.P.: Vibronic coherence in oxygenic photosynthesis. Nat. Chem. 6, 706–711 (2014)

    Google Scholar 

  6. Tiwari, V., Peters, W.K., Jonas, D.M.: Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl. Acad. Sci. 110, 1203–1208 (2013)

    Google Scholar 

  7. Chin, A., Prior, J., Rosenbach, R., Caycedo-Soler, F., Huelga, S., Plenio, M.: The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexes. Nat. Phys. 9, 113–118 (2013)

    Google Scholar 

  8. Blankenship, R.: Molecular Mechanisms of Photosynthesis, 2 edn. Wiley-Blackwell (2014)

    Google Scholar 

  9. Jordanides, X., Scholes, G., Fleming, G.: The mechanism of energy transfer in the bacterial photosynthetic reaction center. J. Phys. Chem. B 105, 1652–1669 (2001)

    Google Scholar 

  10. Schlau-Cohen, G., Re, E.D., Cogdell, R., Fleming, G.: Determination of excited-state energies and dynamics in the B band of the bacterial reaction center with 2D electronic spectroscopy. J. Phys. Chem. Lett. 3, 2487–2492 (2012)

    Google Scholar 

  11. Westenhoff, S., Palecek, D., Edlund, P., Smith, P., Zigmantas, D.: Coherent picosecond exciton dynamics in a photosynthetic reaction center. J. Am. Chem. Soc. 134, 16484–16487 (2012)

    Google Scholar 

  12. Bassi, R.: Berkeley Researchers Identify Photosynthetic Dimmer Switch (2008). http://www2.lbl.gov/Science-Articles/Archive/PBD-CP29.html

  13. Viruvuru, V., Fragata, M.: Photochemical cooperativity in photosystem II. Characterization of oxygen evolution discontinuities in the light-response curves. Phys. Chem. Chem. Phys. 10, 6607–6614 (2008)

    Google Scholar 

  14. Diner, B.A., Rappaport, F.: Structure, dynamics, and energetics of the primary photochemistry of Photosystem II of oxygenic photosynthesis. Annu. Rev. Plant Biol. 53, 551–580 (2002)

    Google Scholar 

  15. Novoderezhkin, V.I., Dekker, J.P., van Grondelle, R.: Mixing of exciton and charge-transfer states in photosystem II reaction centers: modeling of Stark spectra with modified Redfield theory. Biophys. J. 93, 1293–1311 (2007)

    Google Scholar 

  16. Abramavicius, D., Mukamel, S.: Energy-transfer and charge-separation pathways in the reaction center of photosystem II revealed by coherent two-dimensional optical spectroscopy. J. Chem. Phys. 133, 184501 (2010)

    Google Scholar 

  17. Dekker, J.P., van Grondelle, R.: Primary charge separation in photosystem II. Photosynth. Res. 63, 195–208 (2000)

    Google Scholar 

  18. Cardona, T., Sedouda, A., Cox, N., Rutherford, A.W.: Charge separation in Photosystem II: a comparative and evolutionary overview. Biochim. Biophys. Acta-Bioenergetics 1817, 26–43 (2012)

    Google Scholar 

  19. Romero, E., van Stokkum, I.H.M., Novoderezhkin, V.I., Dekker, J.P., van Grondelle, R.: Two different charge separation pathways in photosystem II. Biochemistry 49, 4300–4307 (2010)

    Google Scholar 

  20. Messinger, J., Shevela, D.: Principles of photosynthesis. In: Ginley, D.S., Cahen, D. (eds.) Fundamentals of Materials for Energy and Environmental Sustainability. Cambridge University Press (2012)

    Google Scholar 

  21. Wientjes, E., van Amerongen, H., Croce, R.: Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation. J. Phys. Chem. B 117, 11200–11208 (2013)

    Google Scholar 

  22. Calhoun, T.R., Ginsberg, N.S., Schlau-Cohen, G.S., Cheng, Y.-C., Ballottari, M., Bassi, R., Fleming, G.R.: Quantum coherence enabled determination of the energy landscape in light-harvesting complex II. J. Phys. Chem. B 113, 16291–16295 (2009)

    Google Scholar 

  23. Turner, D.B., Dinshaw, R., Lee, K.-K., Belsley, M.S., Wilk, K.E., Curmic, P.M.G., Scholes, G.D.: Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis. Phys. Chem. Chem. Phys. 14, 4857–4874 (2012)

    Google Scholar 

  24. Flandrin, P.: Time-Frequency/Time-Scale Analysis, (Wavelet Analysis and Its Applications), vol. 10. Academic Press (1998)

    Google Scholar 

  25. Prior, J., Castro, E., Chin, A.W., Almeida, J., Huelga, S.F., Plenio, M.B.: Wavelet analysis of molecular dynamics: efficient extraction of time-frequency information in ultrafast optical processes. J. Chem. Phys. 139, 224103 (2013)

    Google Scholar 

  26. Debnath, L.: Wavelet Transforms and their Applications. Birkhäuser, Boston (2002)

    Google Scholar 

  27. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)

    Google Scholar 

  28. Burrus, C.S., Gopinath, R., Guo, H.: Introduction to Wavelets and Wavelet Transforms, a Primer. Prentice Hall, Upper Saddle River, NJ (USA) (1998)

    Google Scholar 

  29. Butkus, V., Zigmantas, D., Valkunas, L., Abramavicius, D.: Vibrational vs. electronic coherences in 2D spectrum of molecular systems. Chem. Phys. Lett. 545, 40–43 (2012)

    Google Scholar 

  30. Ferretti, M., Novoderezhkin, V. I., Romero, E., Augulis, R., Pandit, A., Zigmantasc, D., van Grondelle, R.: The nature of coherences in the B820 bacteriochlorophyll dimer revealed by two-dimensional electronic spectroscopy. Phys. Chem. Chem. Phys. 16, 9930–9939 (2014)

    Google Scholar 

  31. Schlau-Cohen, G.S., Ishizaki, A., Calhoun, T.R., Ginsberg, N.S., Ballottari, M., Bassi, R., Fleming, G.R. Elucidation of the timescales and origins of quantum electronic coherence in LHCII. Nat. Chem. 4, 389–395 (2012)

    Google Scholar 

  32. Novoderezhkin, V.I., Romero, E., van Grondelle, R.: How exciton-vibrational coherences control charge separation in the photosystem II reaction center. Phys. Chem. Chem. Phys. 17, 30828–30841 (2015)

    Google Scholar 

  33. Addison, P.S.: The Illustrated Wavelet Transform Handbook. Institute of Physics Publishing (2002)

    Google Scholar 

  34. Volpato, A., Collini, E.: Time-frequency methods for coherent spectroscopy. Opt. Express 23, 20040–20050 (2015)

    Google Scholar 

  35. Romero, E., Prior, J., Chin, A. W., Morgan, S. E., Novoderezhkin, V. I., Plenio, M. B., van Grondelle, R.: Quantum-coherent dynamics in photosynthetic charge separation revealed by wavelet analysis. Sci. Rep. 7, 2890 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Elizabeth Morgan .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Morgan, S.E. (2017). Time-Frequency Analysis for 2D Spectroscopy of PSII. In: Ultrafast Quantum Effects and Vibrational Dynamics in Organic and Biological Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63399-2_4

Download citation

Publish with us

Policies and ethics