Skip to main content

Introduction

  • Chapter
  • First Online:
  • 367 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The 20th century witnessed huge breakthroughs in physics, perhaps most spectacularly the foundation of quantum mechanics in the 1920s.

If the 20th century was the century of physics, the 21st century will be the century of biology.,

Craig Venter and Daniel Cohen [1]

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Venter, C., Cohen, D.: The century of biology. New Perspect. Q. 21, 73 (2004)

    Article  Google Scholar 

  2. Chin, A., Prior, J., Rosenbach, R., Caycedo-Soler, F., Huelga, S., Plenio, M.: The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexes. Nat. Phys. 9, 113–118 (2013)

    Article  Google Scholar 

  3. Weiss, U.: Quantum Dissipative Systems. World Scientific (2012)

    Google Scholar 

  4. Schlau-Cohen, G., Ishizaki, A., Fleming, G.: Two-dimensional electronic spectroscopy and photosynthesis: fundamentals and applications to photosynthetic light-harvesting. Chem. Phys. 386, 1–22 (2011)

    Article  ADS  Google Scholar 

  5. Engel, G., Calhourn, T., Read, E., Ahn, T.-K., Mancal, T., Cheng, Y.-C., Blankenship, R., Fleming, G.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007)

    Article  ADS  Google Scholar 

  6. Collini, E., Wong, C., Wilk, K., Curmi, P., Brumer, P., Scholes, G.: Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010)

    Article  ADS  Google Scholar 

  7. Lewis, K., Ogilvie, J.: Probing photosynthetic energy and charge transfer with two-dimensional electronic spectroscopy. J. Phys. Chem. Lett. 3, 503–510 (2012)

    Article  Google Scholar 

  8. Mohseni, M., Omar, Y., Engel, G.S., Plenio, M.B.: Quantum Effects in Biology. Cambridge University Press (2014)

    Google Scholar 

  9. Blankenship, R.: Molecular Mechanisms of Photosynthesis, 2nd edn. Wiley-Blackwell, (2014)

    Google Scholar 

  10. Westenhoff, S., Palecek, D., Edlund, P., Smith, P., Zigmantas, D.: Coherent picosecond exciton dynamics in a photosynthetic reaction center. J. Am. Chem. Soc. 134, 16484–16487 (2012)

    Article  Google Scholar 

  11. Romero, E., Augulis, R., Novoderezhkin, V.I., Ferretti, M., Thieme, J., Zigmantas, D., van Grondelle, R.: Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10, 676–682 (2014)

    Article  Google Scholar 

  12. Fuller, F.D., Pan, J., Gelzinis, A., Butkus, V., Senlik, S.S., Wilcox, D.E., Yocum, C.F., Valkunas, L., Abramavicius, D., Ogilvie, J.P.: Vibronic coherence in oxygenic photosynthesis. Nat. Chem. 6, 706–711 (2014)

    Google Scholar 

  13. Christensson, N., Kauffmann, H.F., Pullerits, T., Mančal, T.: Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116, 7449–7454 (2012)

    Article  Google Scholar 

  14. Tiwari, V., Peters, W.K., Jonas, D.M.: Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl. Acad. Sci. 110, 1203–1208 (2013)

    Article  ADS  Google Scholar 

  15. Butkus, V., Zigmantas, D., Abramavicius, D., Valkunas, L.: Distinctive character of electronic and vibrational coherences in disordered molecular aggregates. Chem. Phys. Lett. 587, 93–98 (2013)

    Article  ADS  Google Scholar 

  16. Kolli, A.: O Reilly, E. J., Scholes, G. D. & Olaya-Castro, A. The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae. J. Chem. Phys. 137, 174109 (2012)

    Article  ADS  Google Scholar 

  17. Bakulin, A.A., Morgan, S.E., Kehoe, T.B., Wilson, M.W.B., Chin, A.W., Zigmantas, D., Egorova, D., Rao, A.: Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy. Nat. Chem. 8, 16–23 (2016)

    Article  Google Scholar 

  18. Smith, M.B., Michl, J.: Singlet fission. Chem. Rev. 110, 6891–6936 (2010)

    Article  Google Scholar 

  19. Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)

    Article  ADS  Google Scholar 

  20. Fassioli, F., Nazir, A., Olaya-Castro, A.: Quantum state tuning of energy transfer in a correlated environment. J. Phys. Chem. Lett. 1, 2139–2143 (2010)

    Google Scholar 

  21. Prior, J., Castro, E., Chin, A.W., Almeida, J., Huelga, S.F., Plenio, M.B.: Wavelet analysis of molecular dynamics: efficient extraction of time-frequency information in ultrafast optical processes. J. Chem. Phys. 139, 224103 (2013)

    Article  ADS  Google Scholar 

  22. Ishizaki, A., Calhoun, T.R., Schlau-Cohen, G.S., Fleming, G.R.: Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Phys. Chem. Chem. Phys. 12, 7319–7337 (2010)

    Article  Google Scholar 

  23. O Reilly, E.J., Olaya-Castro, A.: Non-classicality of the molecular vibrations assisting exciton energy transfer at room temperature. Nat. Commun. 5, 3012 (2014)

    Google Scholar 

  24. Vos, M.H., Rappaport, F., Lambry, J.-C., Breton, J., Martin, J.-L.: Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy. Nature 363, 320–325 (1993)

    Article  ADS  Google Scholar 

  25. Fuglebakk, E., Tiwari, S.P., Reuter, N.: Comparing the intrinsic dynamics of multiple protein structures using elastic network models. Biochim. Biophys. Acta 1850, 911–922 (2015)

    Article  Google Scholar 

  26. Juanico, B., Sanejouand, Y., Piazza, F., Rios, P.D.L.: Discrete breathers in nonlinear network models of proteins. Phys. Rev. Lett. 99, 238104 (2007)

    Article  ADS  Google Scholar 

  27. Cole, D.J., Chin, A.W., Hine, N.D.M., Haynes, P.D., Payne, M.C.: Toward ab initio optical spectroscopy of the Fenna-Matthews-Olson complex. J. Phys. Chem. Lett. 4, 4206–4212 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Elizabeth Morgan .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Morgan, S.E. (2017). Introduction. In: Ultrafast Quantum Effects and Vibrational Dynamics in Organic and Biological Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63399-2_1

Download citation

Publish with us

Policies and ethics