Skip to main content

Hydrogen Diffusion Towards the Fracture Process Zone

  • Chapter
  • First Online:
Strain Gradient Plasticity-Based Modeling of Damage and Fracture

Part of the book series: Springer Theses ((Springer Theses))

  • 777 Accesses

Abstract

Hydrogen diffusion towards the fracture process zone is examined accounting for local hardening due to geometrically necessary dislocations (GNDs) by means of strain gradient plasticity (SGP). Finite element computations are performed within the finite deformation theory to characterize the gradient-enhanced stress elevation and subsequent diffusion of hydrogen towards the crack tip. Results reveal that GNDs, absent in conventional plasticity predictions, play a fundamental role on hydrogen transport ahead of a crack. SGP estimations provide a good agreement with experimental measurements of crack tip deformation and high levels of lattice hydrogen concentration are predicted within microns to the crack tip. The important implications of the results in the understanding of hydrogen embrittlement mechanisms are thoroughly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanchez J, Lee SF, Martin-Rengel MA, Fullea J, Andrade C, Ruiz-Hervfas J (2016) Measurement of hydrogen and embrittlement of high strength steels. Eng Fail Anal 59:467–477. doi:10.1016/j.engfailanal.2015.11.001

    Article  Google Scholar 

  2. Gangloff RP (2003) Hydrogen assisted cracking of high strength alloys. In: Comprehensive structural integrity. Environmentally assisted fatigue, vol 6. Elsevier, Oxford, pp 1–194. doi:10.1016/B0-08-043749-4/06134-6

  3. Serebrinsky S, Carter EA, Ortiz M (2004) A quantummechanically informed continuum model of hydrogen embrittlement. J Mech Phys Solids 52:2403–2430. doi:10.1016/j.jmps.2004.02.010

    Article  MATH  Google Scholar 

  4. Scheider I, Pfuff M, Dietzel W (2008) Simulation of hydrogen assisted stress corrosion cracking using the cohesive model. Eng Fract Mech 75:4283–4291. doi:10.1016/j.engfracmech.2007.10.002

    Article  Google Scholar 

  5. Alvaro A, Olden V, Akselsen OM (2013) 3D cohesive modelling of hydrogen embrittlement in the heat affected zone of an X70 pipeline steel. Int J Hydrog Energy 38:7539–7549. doi:10.1016/j.ijhydene.2013.02.146

    Article  Google Scholar 

  6. Alvaro A, Olden V, Akselsen OM (2014) 3D cohesive modelling of hydrogen embrittlement in the heat affected zone of an X70 pipeline steel - Part II. Int J Hydrog Energy 39:3528–3541. doi:10.1016/j.ijhydene.2013.12.097

    Article  Google Scholar 

  7. del Busto S, Betegón C, Martínez-Pañeda E (2017) A cohesive zone framework for environmentally assisted fatigue. Eng Fract Mech (in press). doi:10.1016/j.engfracmech.2017.05.021

  8. Gerberich WW, Oriani RA, Lji M-J, Chen X, Foecke T (1991) The necessity of both plasticity and brittleness in the fracture thresholds of iron. Philos Mag A 63:363–376. doi:10.1080/01418619108204854

    Article  Google Scholar 

  9. Thomas RLS, Scully JR, Gangloff RP (2003) Internal hydrogen embrittlement of ultrahigh-strength AERMET 100 steel. Metall Mater Trans A 34:327–344. doi:10.1007/s11661-003-0334-3

    Article  Google Scholar 

  10. Lee Y, Gangloff RP (2007) Measurement and modeling of hydrogen environment-assisted cracking of ultra-high-strength steel. Metall Mater Trans A 38:2174–2190. doi:10.1007/s11661-006-9051-z

    Article  Google Scholar 

  11. Gangloff RP, Ha HM, Burns JT, Scully JR (2014) Measurement and modeling of hydrogen environment-assisted cracking in Monel K-500. Metall Mater Trans A 45:3814–3834. doi:10.1007/s11661-014-2324-z

    Article  Google Scholar 

  12. Gangloff RP (2005) Critical issues in hydrogen assisted cracking of structural alloys. University of Virginia, Technical report

    Google Scholar 

  13. Sofronis P, McMeeking RM (1989) Numerical analysis of hydrogen transport near a blunting crack tip. J Mech Phys Solids 37:317–350. doi:10.1016/0022-5096(89)90002-1

    Article  Google Scholar 

  14. Stölken JS, Evans AG (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46:5109–5115. doi:10.1016/S1359-6454(98)00153-0

  15. Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42:457–487. doi:10.1016/0956-7151(94)90502-9

    Google Scholar 

  16. Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46:411–425. doi:10.1016/S0022-5096(97)00086-0

    Article  MATH  Google Scholar 

  17. Aifantis EC (1984) On the microstructural origin of certain inelastic models. J Eng Mater Technol 106:326–330. doi:10.1115/1.3225725

    Article  Google Scholar 

  18. Gao H, Huang Y, Nix WD, Hutchinson JW (1999) Mechanism-based strain gradient plasticity-I. Theory. J Mech Phys Solids 47:128–152. doi:10.1016/S0022-5096(98)00103-3

    MathSciNet  MATH  Google Scholar 

  19. Fleck NA, Hutchinson JW (2001) A reformulation of strain gradient plasticity. J Mech Phys Solids 49:2245–2271. doi:10.1016/S0022-5096(01)00049-7

    Article  MATH  Google Scholar 

  20. Fleck NA, Hutchinson JW, Willis JR (2014) Strain gradient plasticity under non-proportional loading. Proc R Soc A, vol 470, p 20140267. doi:10.1098/rspa.2014.0267

  21. Niordson CF, Hutchinson JW (2003) On lower order strain gradient plasticity theories. Eur J Mech A Solids 22:771–778. doi:10.1016/S0997-7538(03)00069-X

    Article  MATH  Google Scholar 

  22. Bardella L (2010) Size effects in phenomenological strain gradient plasticity constitutively involving the plastic spin. Int J Eng Sci 48:550–568. doi:10.1016/j.ijengsci.2010.01.003

    Article  MathSciNet  MATH  Google Scholar 

  23. Klusemann B, Svendsen B, Vehoff H (2013) Modeling and simulation of deformation behavior, orientation gradient development and heterogeneous hardening in thin sheets with coarse texture. Int J Plast 50:109–125. doi:10.1016/j.ijplas.2013.04.004

    Article  Google Scholar 

  24. Martínez-Pañeda E, Niordson CF, Bardella L (2016) A finite element framework for distortion gradient plasticity with applications to bending of thin foils. Int J Solids Struct 96:288–299. doi:10.1016/j.ijsolstr.2016.06.001

  25. Wei Y, Hutchinson JW (1997) Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity. J Mech Phys Solids 45:1253–1273. doi:10.1016/S0022-5096(97)00018-5

    Article  MathSciNet  MATH  Google Scholar 

  26. Komaragiri U, Agnew S, Gangloff RP, Begley M (2008) The role of macroscopic hardening and individual length-scales on crack tip stress elevation from phenomenological strain gradient plasticity. J Mech Phys Solids 56:3527–3540. doi:10.1016/j.jmps.2008.08.007

    Article  MATH  Google Scholar 

  27. Nielsen KL, Niordson CF, Hutchinson JW (2012) Strain gradient effects on steady state crack growth in rate-sensitive materials. Eng Fract Mech 96:61–71. doi:10.1016/j.engfracmech.2012.06.022

    Article  Google Scholar 

  28. Martínez-Pañeda E, Betegón C (2015) Modeling damage and fracture within strain-gradient plasticity. Int J Solids Struct 59:208–215. doi:10.1016/j.ijsolstr.2015.02.010

  29. Martínez-Pañeda E, Niordson CF (2016) On fracture in finite strain gradient plasticity. Int J Plast 80:154–167. doi:10.1016/j.ijplas.2015.09.009

  30. Elssner G, Korn D, Ruehle M (1994) The influence of interface impurities on fracture energy of UHV diffusion bonded metal-ceramic bicrystals. Scr Metall Mater 31:1037–1042. doi:10.1016/0956-716X(94)90523-1

    Article  Google Scholar 

  31. Qu S, Huang Y, Jiang H, Liu C (2004) Fracture analysis in the conventional theory of mechanism-based strain gradient (CMSG) plasticity. Int J Fract: 199–220. doi:10.1023/B:FRAC.0000047786.40200.f8

  32. Gangloff RP, Somerday BP (2012) Gaseous hydrogen embrittlement of materials in energy technologies, vol 1. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  33. Turnbull A (2015) Perspectives on hydrogen uptake, diffusion and trapping. Int J Hydrog Energy 40:16961–16970. doi:10.1016/j.ijhydene.2015.06.147

    Article  Google Scholar 

  34. Olden V, Thaulow C, Johnsen R, Østby E, Berstad T (2009) Influence of hydrogen from cathodic protection on the fracture susceptibility of 25%Cr duplex stainless steel - Constant load SENT testing and FE-modelling using hydrogen influenced cohesive zone elements. Eng Fract Mech 76:827–844. doi:10.1016/j.engfracmech.2008.11.011

    Article  Google Scholar 

  35. Mao SX, Li M (1998) Mechanics and thermodynamics on the stress and hydrogen interaction in crack tip stress corrosion: experiment and theory. J Mech Phys Solids 46:1125–1137. doi:10.1016/S0022-5096(97)00054-9

    Article  MATH  Google Scholar 

  36. McMeeking RM (1977) Finite deformation analysis of crack-tip opening in elastic-plastic materials and implications for fracture. J Mech Phys Solids 25:357–381. doi:10.1016/0022-5096(77)90003-5

    Article  Google Scholar 

  37. Di Leo CV, Anand L (2013) Hydrogen in metals: a coupled theory for species diffusion and large elastic-plastic deformations. J Mech Phys Solids 31:1037–1042. doi:10.1016/j.ijplas.2012.11.005

    Google Scholar 

  38. Olden V, Thaulow C, Johnsen R, Østby E, Berstad T (2008) Application of hydrogen influenced cohesive laws in the prediction of hydrogen induced stress cracking in 25%Cr duplex stainless steel. Eng Fract Mech 75:2333–2351. doi:10.1016/j.engfracmech.2007.09.003

    Article  Google Scholar 

  39. Huang Z, Shi Q, Chen F, Shi Y (2014) FEM simulation of the hydrogen diffusion in X80 pipeline steel during stacking for slow cooling. Acta Metall Sin 27:416–421. doi:10.1007/s40195-014-0073-z

    Article  Google Scholar 

  40. Taha A, Sofronis P (2001) A micromechanics approach to the study of hydrogen transport and embrittlement. Eng Fract Mech 68:803–837. doi:10.1016/S0013-7944(00)00126-0

    Article  Google Scholar 

  41. Ayas C, Fleck NA, Deshpande VS (2015) Hydrogen embrittlement of a bimaterial. Mech Mater 80:193–202. doi:10.1016/j.mechmat.2014.06.002

    Article  Google Scholar 

  42. Martínez-Pañeda E, Niordson CF, Gangloff RP (2016) Strain gradient plasticity-based of hydrogen environment assisted cracking. Acta Mater 117:321–332. doi:10.1016/j.actamat.2016.07.022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Martínez Pañeda .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Martínez Pañeda, E. (2018). Hydrogen Diffusion Towards the Fracture Process Zone. In: Strain Gradient Plasticity-Based Modeling of Damage and Fracture. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63384-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63384-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63383-1

  • Online ISBN: 978-3-319-63384-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics