Skip to main content

Mechanism-Based Crack Tip Characterization

  • Chapter
  • First Online:
Strain Gradient Plasticity-Based Modeling of Damage and Fracture

Part of the book series: Springer Theses ((Springer Theses))

  • 738 Accesses

Abstract

The influence of the plastic size effect on the fracture process of metallic materials is numerically analyzed using the strain-gradient plasticity (SGP) theory established from the Taylor dislocation model. The numerical framework of the chosen SGP theory is developed for allowing large strains and rotations. The material model is implemented in a commercial finite element (FE) code by a user subroutine, and crack-tip fields are evaluated thoroughly for both infinitesimal and finite deformation theories by a boundary-layer formulation. An extensive parametric study is conducted and differences in the stress distributions ahead of the crack tip, as compared with conventional plasticity, are quantified. As a consequence of the strain-gradient contribution to the work hardening of the material, FE results show a significant increase in the magnitude and the extent of the differences between the stress fields of SGP and conventional plasticity theories when finite strains are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wei Y, Hutchinson JW (1997) Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity. J Mech Phys Solids 45:1253–1273. doi:10.1016/S0022-5096(97)00018-5

    Article  MathSciNet  MATH  Google Scholar 

  2. Elssner G, Korn D, Ruehle M (1994) The influence of interface impurities on fracture energy of UHV diffusion bonded metal-ceramic bicrystals. Scr Metall et Mater 31:1037–1042. doi:10.1016/0956-716X(94)90523-1

    Article  Google Scholar 

  3. Korn D, Elssner G, Cannon RM, Rühle M (2002) Fracture properties of interfacially doped Nb-A1 2 O 3 bicrystals: I, fracture characteristics. Acta Mater 50:3881–3901. doi:10.1016/S1359-6454(02)00193-3

    Article  Google Scholar 

  4. Hutchinson JW (1997) Linking scales in fracture mechanics. In: Karihaloo BL, Mai YW, Ripley MI, Ritchie RO (eds) Advances in fracture research. Pergamon Press, Amsterdam, pp 1–14

    Google Scholar 

  5. Jiang H, Huang Y, Zhuang Z, Hwang KC (2001) Fracture in mechanism-based strain gradient plasticity. J Mech Phys Solids 49:979–993. doi:10.1016/S0022-5096(00)00070-3

    Article  MATH  Google Scholar 

  6. Qu S, Huang Y, Jiang H, Liu C (2004) Fracture analysis in the conventional theory of mechanism-based strain gradient (CMSG) plasticity. Int J Fract 199–220. doi:10.1023/B:FRAC.0000047786.40200.f8

  7. Wei Y, Xu G (2005) A multiscale model for the ductile fracture of crystalline materials. Int J Plast 21:2123–2149. doi:10.1016/j.ijplas.2005.04.003

    Article  MATH  Google Scholar 

  8. Komaragiri U, Agnew S, Gangloff RP, Begley M (2008) The role of macroscopic hardening and individual length-scales on crack tip stress elevation from phenomenological strain gradient plasticity. J Mech Phys Solids 56:3527–3540. doi:10.1016/j.jmps.2008.08.007

    Article  MATH  Google Scholar 

  9. Nielsen KL, Niordson CF, Hutchinson JW (2012) Strain gradient effects on steady state crack growth in rate-sensitive materials. Eng Fract Mech 96:61–71. doi:10.1016/j.engfracmech.2012.06.022

    Article  Google Scholar 

  10. Hwang KC, Jiang H, Huang Y, Gao H (2003) Finite deformation analysis of mechanism-based strain gradient plasticity: torsion and crack tip field. Int J Plast 19:235–251. doi:10.1016/S0749-6419(01)00039-0

    Article  MATH  Google Scholar 

  11. Pan X, Yuan H (2011) Applications of the element-free Galerkin method for singular stress analysis under strain gradient plasticity theories. Eng Fract Mech 78:452–461. doi:10.1016/j.engfracmech.2010.08.024

    Article  Google Scholar 

  12. Yuan H, Chen J (2000) Analysis of size effects based on lowerorder gradient plasticity model. Comput Mater Sci 19:143–157. doi:10.1016/S0927-0256(00)00149-X

    Article  Google Scholar 

  13. Tvergaard V, Niordson CF (2008) Size effects at a crack-tip interacting with a number of voids. Philos Mag 88:3827–3840. doi:10.1080/14786430802225540

    Article  Google Scholar 

  14. Mikkelsen LP, Goutianos S (2009) Suppressed plastic deformation at blunt crack-tips due to strain gradient effects. Int J Solids Struct 46:4430–4436. doi:10.1016/j.ijsolstr.2009.09.001

    Article  MATH  Google Scholar 

  15. Fleck NA, Hutchinson JW (2001) A reformulation of strain gradient plasticity. J Mech Phys Solids 49:2245–2271. doi:10.1016/S0022-5096(01)00049-7

    Article  MATH  Google Scholar 

  16. Swaddiwudhipong S, Hua J, Tho KK, Liu ZS (2006) Finite element modelling for materials with size effect. Model Simul Mater Sci Eng 14:1127–1137. doi:10.1088/0965-0393/14/7/002

    Article  Google Scholar 

  17. Swaddiwudhipong S, Tho KK, Hua J, Liu ZS (2006) Mechanism-based strain gradient plasticity in C0 axisymmetric element. Int J Solids Struct 43:1117–1130. doi:10.1016/j.ijsolstr.2005.05.026.171

    Article  MATH  Google Scholar 

  18. Papazafeiropoulos G, Muñiz-Calvente M, Martínez-Pañeda E (2017) Abaqus2Matlab: a suitable tool for finite element post-processing. Adv Eng Softw 105:9–16. doi:10.1016/j.advengsoft.2017.01.006

  19. Rice JR, Rosengren GF (1968) Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids 16:1–12. doi:10.1016/0022-5096(68)90013-6

  20. Hutchinson JW (1968) Singular behaviour at the end of a tensile crack in a hardening material. J Mech Phys Solids. 16:13–31. doi:10.1016/0022-5096(68)90014-8

  21. Betegón C, Hancock JW (1991) Two-parameter characterization of elastic-plastic crack-tip fields. J Appl Mech 58:104–110. doi:10.1115/1.2897135

    Article  Google Scholar 

  22. Shi M, Huang Y, Jiang H, Hwang KC, Li M (2001) The boundary-layer effect on the crack tip field in mechanismbased strain gradient plasticity. Int J Fract 23–41. doi:10.1023/A:1013548131004

  23. Fleck NA, Hutchinson JW (1993) A phenomenological theory for strain-gradient effects in plasticity. J Mech Phys Solids 41:1825–1857. doi:10.1016/0022-5096(93)90072-N

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang Y-Y (1991) A two-parameter characterization of elasticplastic crack-tip fields and applications to cleavage fracture. Ph.D. thesis. Massachusetts Institute of Technology

    Google Scholar 

  25. Hughes T, Winget J (1980) Finite rotation effects in numerical integration of rate constitutive equations arising in largedeformation analysis. Int J Numer Methods Eng 15:1862–1867. doi:10.1002/nme.1620151210

    Article  MATH  Google Scholar 

  26. McMeeking RM (1977) Finite deformation analysis of crack-tip opening in elastic-plastic materials and implications for fracture. J Mech Phys Solids 25:357–381. doi:10.1016/0022-5096(77)90003-5

    Article  Google Scholar 

  27. Lee Y, Gangloff RP (2007) Measurement and modeling of hydrogen environment-assisted cracking of ultra-high-strength steel. Metall Mater Trans A 38:2174–2190. doi:10.1007/s11661-006-9051-z

    Article  Google Scholar 

  28. Gangloff RP (2003) Hydrogen assisted cracking of high strength alloys. In: Comprehensive structural integrity. Environmentally assisted fatigue, Chap. vol. 6. Elsevier, Oxford. pp 1–194. doi:10.1016/B0-08-043749-4/06134-6

  29. Betegón C, Peñuelas I, del Coz JJ (2008) Numerical analysis of the influence of material mismatching in the transition curve of welded joints. Eng Fract Mech 75:3464–3482. doi:10.1016/j.engfracmech.2007.05.005

    Article  Google Scholar 

  30. Chu CC, Needleman A (1980) Void nucleation effects in biaxially stretched sheets. J Eng Mater Technol 102:249–256. doi:10.1115/1.3224807

    Article  Google Scholar 

  31. Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32:157–169. doi:10.1016/0001-6160(84)90213-X

    Article  Google Scholar 

  32. Gurson AL (1975) Plastic flow and fracture behaviour of ductile materials incorporating void nucleation, growth and coalescence. Ph.D. thesis. Brown University

    Google Scholar 

  33. Thomason PF (1990) Ductile fracture of metals. Pergamon Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Martínez Pañeda .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Martínez Pañeda, E. (2018). Mechanism-Based Crack Tip Characterization. In: Strain Gradient Plasticity-Based Modeling of Damage and Fracture. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63384-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63384-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63383-1

  • Online ISBN: 978-3-319-63384-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics