Skip to main content

Estimation-Based Search Space Traversal in PILP Environments

  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10326))

Included in the following conference series:

Abstract

Probabilistic Inductive Logic Programming (PILP) systems extend ILP by allowing the world to be represented using probabilistic facts and rules, and by learning probabilistic theories that can be used to make predictions. However, such systems can be inefficient both due to the large search space inherited from the ILP algorithm and to the probabilistic evaluation needed whenever a new candidate theory is generated. To address the latter issue, this work introduces probability estimators aimed at improving the efficiency of PILP systems. An estimator can avoid the computational cost of probabilistic theory evaluation by providing an estimate of the value of the combination of two subtheories. Experiments are performed on three real-world datasets of different areas (biology, medical and web-based) and show that, by reducing the number of theories to be evaluated, the estimators can significantly shorten the execution time without losing probabilistic accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The unification of variables between the literals is obtained from the specified language bias.

  2. 2.

    Theories are indexed only for clarity’s sake. They correspond to the same concept to be learned.

  3. 3.

    http://www.cs.wisc.edu/~dpage/kddcup2001.

  4. 4.

    http://rtw.ml.cmu.edu.

References

  1. Bellodi, E., Riguzzi, F.: Structure learning of probabilistic logic programs by searching the clause space. Theor. Pract. Log. Program. 15(02), 169–212 (2015)

    Article  Google Scholar 

  2. Côrte-Real, J., Mantadelis, T., Dutra, I., Rocha, R., Burnside, E.: SkILL - a stochastic inductive logic learner. In: Proceedings of the 14th International Conference on Machine Learning and Applications, pp. 555–558. IEEE (2015)

    Google Scholar 

  3. De Raedt, L., Dries, A., Thon, I., Van den Broeck, G., Verbeke, M.: Inducing probabilistic relational rules from probabilistic examples. In: International Joint Conference on Artificial Intelligence, pp. 1835–1843. AAAI Press (2015)

    Google Scholar 

  4. Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In: Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.) Probabilistic Inductive Logic Programming. LNCS, vol. 4911, pp. 1–27. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78652-8_1

    Chapter  Google Scholar 

  5. De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Mach. Learn. 100(1), 5–47 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Raedt, L., Thon, I.: Probabilistic rule learning. In: Frasconi, P., Lisi, F.A. (eds.) ILP 2010. LNCS, vol. 6489, pp. 47–58. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21295-6_9

    Chapter  Google Scholar 

  7. Getoor, L.: Introduction to Statistical Relational Learning. MIT press, Cambridge (2007)

    MATH  Google Scholar 

  8. Getoor, L., Taskar, B., Koller, D.: Selectivity estimation using probabilistic models. In: ACM SIGMOD Record, vol. 30, pp. 461–472. ACM (2001)

    Google Scholar 

  9. Kersting, K., De Raedt, L., Kramer, S.: Interpreting Bayesian logic programs. In: AAAI Workshop on Learning Statistical Models from Relational Data, pp. 29–35 (2000)

    Google Scholar 

  10. Kimmig, A., Demoen, B., De Raedt, L., Costa, V.S., Rocha, R.: On the implementation of the probabilistic logic programming language ProbLog. Theor. Pract. Log. Program. 11(2 & 3), 235–262 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kok, S., Domingos, P.: Learning the structure of markov logic networks. In: International Conference on Machine Learning, pp. 441–448. ACM (2005)

    Google Scholar 

  12. Muggleton, S.: Stochastic logic programs. Adv. Inductive Log. Program. 32, 254–264 (1996)

    MathSciNet  Google Scholar 

  13. Natarajan, S., Khot, T., Kersting, K., Gutmann, B., Shavlik, J.: Gradient-based boosting for statistical relational learning: the relational dependency network case. Mach. Learn. 86(1), 25–56 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006)

    Article  Google Scholar 

  15. Costa, V.S., Page, D., Qazi, M., Cussens, J.: CLP(BN): constraint logic programming for probabilistic knowledge. In: Conference on Uncertainty in Artificial Intelligence, pp. 517–524 (2002)

    Google Scholar 

  16. Sato, T., Kameya, Y.: PRISM: a language for symbolic-statistical modeling. In: International Joint Conference on Artificial Intelligence, vol. 97, pp. 1330–1339. Morgan Kaufmann (1997)

    Google Scholar 

  17. Schulte, O., Khosravi, H., Kirkpatrick, A., Gao, T., Zhu, Y.: Modelling relational statistics with Bayes nets. Mach. Learn. 94(1), 105–125 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Joana Côrte-Real is funded by the FCT grant SFRH/BD/52235/2013. This work is partially funded by the ERDF through the COMPETE 2020 Programme within project POCI-01-0145-FEDER-006961, by National Funds through the FCT as part of project UID/EEA/50014/2013, and by the North Portugal Regional Operational Programme, under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund as part of project NanoSTIMA (NORTE-01-0145-FEDER-000016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Côrte-Real .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Côrte-Real, J., Dutra, I., Rocha, R. (2017). Estimation-Based Search Space Traversal in PILP Environments. In: Cussens, J., Russo, A. (eds) Inductive Logic Programming. ILP 2016. Lecture Notes in Computer Science(), vol 10326. Springer, Cham. https://doi.org/10.1007/978-3-319-63342-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63342-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63341-1

  • Online ISBN: 978-3-319-63342-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics