Skip to main content

Norway Spruce Fine Roots and Fungal Hyphae Grow Deeper in Forest Soils After Extended Drought

  • Conference paper
  • First Online:
Soil Biological Communities and Ecosystem Resilience

Abstract

Global warming will most likely lead to increased drought stress in forest trees. We wanted to describe the adaptive responses of fine roots and fungal hyphae, at different soil depths, in a Norway spruce stand to long-term drought stress induced by precipitation exclusion over two growing seasons. We used soil cores, minirhizotrons and nylon meshes to estimate growth, biomass and distribution of fine roots and fungal hyphae at different soil depths. In control plots fine roots proliferated in upper soil layers, whereas in drought plots there was no fine root growth in upper soil layers and roots mostly occupied deeper soil layers. Fungal hyphae followed the same pattern as fine roots, with the highest biomass in deeper soil layers in drought plots. We conclude that both fine roots and fungal hyphae respond to long-term drought stress by growing into deeper soil layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber, J. D., Melillo, J. M., Nadelhoffer, K. J., McClaugherty, C. A., & Pastor, J. (1985). Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen vailability: a comparison of two methods. Oecologia, 66, 317–321.

    Article  PubMed  Google Scholar 

  • Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660–684.

    Article  Google Scholar 

  • Andreassen, K., Solberg, S., Tveito, O. E., & Lystad, S. L. (2006). Regional differences in climatic responses of Norway spruce (Picea abies L. Karst) growth in Norway. Forest Ecology and Management, 222, 211–221.

    Article  Google Scholar 

  • Borken, W., Savage, K., Davidson, E. A., & Trumbore, S. E. (2006). Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Global Change Biology, 12, 177–193.

    Article  Google Scholar 

  • Bréda, N., Huc, R., Granier, A., & Dreyer, E. (2006). Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63, 625–644.

    Article  Google Scholar 

  • Brownlee, C., Duddridge, J. A., Malibari, A., & Read, D. J. (1983). The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilate and water transport. Plant and Soil, 71, 433–443.

    Article  Google Scholar 

  • Brunner, I., Herzog, C., Dawes, M. A., Arend, M., & Sperisen, C. (2015). How tree roots respond to drought. Frontiers in Plant Science, 6, 547.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buée, M., Vairelles, D., & Garbaye, J. (2005). Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus sylvatica) forest subjected to two thinning regimes. Mycorrhiza, 15, 235–245.

    Article  PubMed  Google Scholar 

  • Čermák, J., Deml, M., & Penka, M. (1973). A new method of sap flow rate determination in trees. Biologia Plantarum (Prague), 15, 171–178.

    Article  Google Scholar 

  • Čermák, J., Kučera, J., & Nadezhdina, N. (2004). Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees, 18, 529–546.

    Article  Google Scholar 

  • Ditmarová, L., Kurjak, D., Palmroth, S., Kmeť, J., & Střelcová, K. (2010). Physiological responses of Norway spruce (Picea abies) seedlings to drought stress. Tree Physiology, 30, 205–213.

    Article  PubMed  Google Scholar 

  • Ekblad, A., Wallander, H., Godbold, D. L., Cruz, C., Johnson, D., et al. (2013). The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: Role in carbon cycling. Plant and Soil, 366, 1–27.

    Article  CAS  Google Scholar 

  • Ekelund, F., Rønn, R., & Christensen, S. (2001). Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites. Soil Biology and Biochemistry, 33, 475–481.

    Article  CAS  Google Scholar 

  • Eldhuset, T. D., Nagy, N. E., Volařík, D., Børja, I., Gebauer, R., et al. (2013). Drought affects tracheid structure, dehydrin expression, and above- and belowground growth in 5-year-old Norway spruce. Plant and Soil, 366, 305–320.

    Article  CAS  Google Scholar 

  • Gaul, D., Hertel, D., Borken, W., Matzner, E., & Leuschner, C. (2008). Effects of experimental drought on the fine root system of mature Norway spruce. Forest Ecology and Management, 256, 1151–1159.

    Article  Google Scholar 

  • Gebauer, R., Volařík, D., Urban, J., Børja, I., Nagy, N. E., et al. (2011). Effect of thinning on anatomical adaptations of Norway spruce needles. Tree Physiology, 31, 1103–1113.

    Article  PubMed  Google Scholar 

  • Gebauer, R., Volařík, D., Urban, J., Børja, I., Nagy, N. E., et al. (2012). Effects of different light conditions on the xylem structure of Norway spruce needles. Trees - Structure and Function, 26, 1079–1089.

    Article  Google Scholar 

  • Gebauer, R., Volařík, D., Urban, J., Børja, I., Nagy, N. E., et al. (2015). Effects of prolonged drought on the anatomy of sun and shade needles in young Norway spruce trees. Ecology and Evolution, 5, 4989–4998.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hendrick, R. L., & Pregitzer, K. S. (1993). The dynamics of fine-root length, biomass, and nitrogen-content in 2 northern hardwood ecosystems. Canadian Journal of Forest Research, 23, 2507–2520.

    Article  Google Scholar 

  • Hirano, Y., Noguchi, K., Ohashi, M., Hishi, T., Makita, N., et al. (2009). A new method for placing and lifting root meshes for estimating fine root production in forest ecosystems. Plant Root, 3, 26–31.

    Article  Google Scholar 

  • IPCC. (2013). IPCC fifth assessment report. Weather, 68, 310–310.

    Article  Google Scholar 

  • Jackson, R. B., Mooney, H. A., & Schulze, E. D. (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences, USA, 94, 7362–7366.

    Article  CAS  Google Scholar 

  • Joslin, J. D., Wolfe, M. H., & Hanson, P. J. (2000). Effects of altered water regimes on forest root systems. New Phytologist, 147, 117–129.

    Article  Google Scholar 

  • Konôpka, B., & Lukáč, M. (2013). Moderate drought alters biomass and depth distribution of fine roots in Norway spruce. Forest Pathology, 43, 115–123.

    Article  Google Scholar 

  • Leuschner, C., Backes, K., Hertel, D., Schipka, F., Schmitt, U., et al. (2001). Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. Forest Ecology and Management, 149, 33–46.

    Article  Google Scholar 

  • Leuschner, C., Hertel, D., Schmid, I., Koch, O., Muhs, A., & Holscher, D. (2004). Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility. Plant and Soil, 258, 43–56.

    Article  CAS  Google Scholar 

  • Lukáč, M., & Godbold, D. L. (2010). Fine root biomass and turnover in southern taiga estimated by root inclusion nets. Plant and Soil, 331, 505–513.

    Article  Google Scholar 

  • Lyr, H., & Hoffmann, G. (1967). Growth rate and growth periodicity of tree roots. International Review of Forest Research, 2, 181–206.

    Article  Google Scholar 

  • McDowell, N. G., & Sevanto, S. (2010). The mechanisms of carbon starvation: How, when, or does it even occur at all? New Phytologist, 186, 264–266.

    Article  PubMed  Google Scholar 

  • McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., et al. (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719–739.

    Article  PubMed  Google Scholar 

  • Meier, I. C., & Leuschner, C. (2008). Belowground drought response of European beech: Fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Global Change Biology, 14, 2081–2095.

    Article  Google Scholar 

  • Moser, B., Kipfer, T., Richter, S., Egli, S., & Wohlgemuth, T. (2015). Drought resistance of Pinus sylvestris seedlings conferred by plastic root architecture rather than ectomycorrhizal colonisation. Annals of Forest Science, 72, 301–309.

    Article  Google Scholar 

  • Muhsin, T. M., & Zwiazek, J. J. (2002). Ectomycorrhizas increase apoplastic water transport and root hydraulic conductivity in Ulmus americana seedlings. New Phytologist, 153, 153–158.

    Article  Google Scholar 

  • Plamboeck, A. H., Dawson, T. E., Egerton-Warburton, L. M., North, M., Bruns, T. D., & Querejeta, J. I. (2007). Water transfer via ectomycorrhizal fungal hyphae to conifer seedlings. Mycorrhiza, 17, 439–447.

    Article  PubMed  Google Scholar 

  • Pregitzer, K. S., Hendrick, R. L., & Fogel, R. (1993). The demography of fine roots in response to patches of water and nitrogen. New Phytologist, 125, 575–580.

    Article  Google Scholar 

  • Roudier, P., Andersson, J. C. M., Donnelly, C., Feyen, L., Greuell, W., & Ludwig, F. (2016). Projections of future floods and hydrological droughts in Europe under a +2 degrees C global warming. Climatic Change, 135, 341–355.

    Article  Google Scholar 

  • Santantonio, D., & Hermann, R. K. (1985). Standing crop, production, and turnover of fine roots on dry, moderate, and wet sites of mature douglas-fir in western Oregon. Annales des Sciences Forestières, 42, 113–142.

    Article  Google Scholar 

  • Schall, P., Lödige, C., Beck, M., & Ammer, C. (2012). Biomass allocation to roots and shoots is more sensitive to shade and drought in European beech than in Norway spruce seedlings. Forest Ecology and Management, 266, 246–253.

    Article  Google Scholar 

  • Sevanto, S., McDowell, N. G., Dickman, L. T., Pangle, R., & Pockman, W. T. (2014). How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell and Environment, 37, 153–161.

    Article  CAS  Google Scholar 

  • Sohn, J. A., Kohler, M., Gessler, A., & Bauhus, J. (2012). Interactions of thinning and stem height on the drought response of radial stem growth and isotopic composition of Norway spruce (Picea abies). Tree Physiology, 32, 1199–1213.

    Article  PubMed  Google Scholar 

  • Solberg, S. (2004). Summer drought: A driver for crown condition and mortality of Norway spruce in Norway. Forest Pathology, 34, 93–104.

    Google Scholar 

  • Steele, S. J., Gower, S. T., Vogel, J. G., & Norman, J. M. (1997). Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada. Tree Physiology, 17, 577–587.

    Article  CAS  PubMed  Google Scholar 

  • Vogt, K. A., Vogt, D. J., Palmiotto, P. A., Boon, P., Ohara, J., & Asbjornsen, H. (1996). Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant and Soil, 187, 159–219.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jaromíra Dreslerová for excellent technical assistance. This work was funded by Iceland, Liechtenstein and Norway through the EEA Financial Mechanism, the Norwegian Financial Mechanism (grant no. A/CZ0046/2/0009), Mendel University in Brno (grant IGA 73/2013), the EEA project FRAMEADAPT EHP-CZ02-OV-1-044-01-2014, and the project “Indicators of Tree Vitality” (Reg. No. CZ.1.07/2.3.00/20.0265), co-financed by the European Social Fund and the Czech Republic. We also acknowledge contribution by COST Actions FP1106 “STReESS” and FP1305 “BioLink”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella Børja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Børja, I. et al. (2017). Norway Spruce Fine Roots and Fungal Hyphae Grow Deeper in Forest Soils After Extended Drought. In: Lukac, M., Grenni, P., Gamboni, M. (eds) Soil Biological Communities and Ecosystem Resilience. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-63336-7_8

Download citation

Publish with us

Policies and ethics