Skip to main content

What Lies Beneath: Root-Associated Bacteria to Improve the Growth and Health of Olive Trees

  • Conference paper
  • First Online:
Soil Biological Communities and Ecosystem Resilience

Abstract

During the last decades we have witnessed growing public concern on the abuse/misuse of agrochemicals to control plant pathogens. The fact that some relevant phytopathogens (for instance, the soil-borne fungus Verticillium dahliae Kleb.) are very difficult to control by methods alternative to chemical-based products, has urged researchers to seek effective measures within integrated disease management frameworks. Biological control, alone or in combination with other approaches, emerges as one of the most promising alternatives to confront plant pathogens in a sustainable, environment-friendly strategy. Effectiveness of biological control agents (BCA) largely depends on colonization and persistence capabilities in the ecological niches (e.g. root and/or rhizosphere) where their benefits are expected to be deployed. As a consequence, due to BCA-host specificity (or co-adaptation) the search of potential BCAs in their target environments seems an appropriate strategy. This chapter describes the isolation, identification and characterization of indigenous antagonist bacteria from the olive rhizosphere that can be eventually exploited as BCA against relevant pathogens affecting this woody crop, with emphasis on V. dahliae. The approach here implemented could be of interest for other pathosystems involving trees and soil-borne pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajit, N. S., Verma, R., & Shanmugam, V. (2006). Extracellular chitinases of fluorescent pseudomonads antifungal to Fusarium oxysporum f. sp. dianthi causing carnation wilt. Current Microbiology, 52, 310–316.

    Article  CAS  PubMed  Google Scholar 

  • Aleandri, M. P., Chilosi, G., Bruni, N., Tomassini, A., Vettraino, A. M., & Vannini, A. (2015). Use of nursery potting mixes amended with local Trichoderma strains with multiple complementary mechanisms to control soil-borne diseases. Crop Protection, 67, 269–278.

    Article  Google Scholar 

  • Aranda, S., Montes-Borrego, M., Jiménez-Díaz, R. M., & Landa, B. B. (2011). Microbial communities associated with the root system of wild olives (Olea europaea L. subsp europaea var. sylvestris) are good reservoirs of bacteria with antagonistic potential against Verticillium dahliae. Plant and Soil, 343, 329–345.

    Article  CAS  Google Scholar 

  • Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327–1350.

    Article  CAS  PubMed  Google Scholar 

  • Borriss, R. (2015). Bacillus, a plant-beneficial bacterium. In Principles of Plant-Microbe Interactions (pp. 379–391). Cham: Springer.

    Google Scholar 

  • Bowman, S. M., & Free, S. J. (2006). The structure and synthesis of the fungal cell wall. Bioessays, 28, 799–808.

    Article  PubMed  Google Scholar 

  • Bubici, G., & Cirulli, M. (2011). Verticillium wilt of olives. In Olive diseases and disorders (pp. 191–222). Kerala: Research Signpost.

    Google Scholar 

  • Bubici, G., & Cirulli, M. (2012). Control of Verticillium wilt of olive by resistant rootstocks. Plant Soil, 352, 363–376.

    Article  CAS  Google Scholar 

  • Carrero-Carrón, I., Trapero-Casas, J. L., Olivares-García, C., Monte, E., Hermosa, R., & Jiménez-Díaz, R. M. (2016). Trichoderma asperellum is effective for biocontrol of Verticillium wilt in olive caused by the defoliating pathotype of Verticillium dahliae. Crop Protection, 88, 45–52.

    Article  Google Scholar 

  • Cazorla, F. M., & Mercado-Blanco, J. (2016). Biological control of tree and woody plant diseases: an impossible task? BioControl, 61, 233–242.

    Article  Google Scholar 

  • Collado-Romero, M., Mercado-Blanco, J., Olivares-García, C., Valverde-Corredor, A., & Jiménez-Díaz, R. (2006). Molecular variability within and among Verticillium dahliae vegetative compatibility groups determined by fluorescent amplified fragment length polymorphism and polymerase chain reaction markers. Phytopathology, 96, 485–495.

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT. (2016). Available online at: http://faostat.fao.org/

  • George, P., Gupta, A., Gopal, M., Thomas, L., & Thomas, G. V. (2013). Multifarious beneficial traits and plant growth promoting potential of Serratia marcescens KiSII and Enterobacter sp. RNF 267 isolated from the rhizosphere of coconut palms (Cocos nucifera L.) World Journal of Microbiology and Biotechnology, 29, 109–117.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Lama Cabanás, C., Valverde-Corredor, A., & Pérez-Artes, E. (2012). Molecular analysis of Spanish populations of Fusarium oxysporum f. sp. dianthi demonstrates a high genetic diversity and identifies virulence groups in races 1 and 2 of the pathogen. European Journal of Plant Pathology, 132, 561–576.

    Article  Google Scholar 

  • Han, S. H., Lee, S. J., Moon, J. H., Park, K. H., Yang, K. Y., et al. (2006). GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Molecular Plant-Microbe Interactions, 19, 924–930.

    Article  CAS  PubMed  Google Scholar 

  • Handelsman, J., & Stabb, E. V. (1996). Biocontrol of soilborne plant pathogens. The Plant Cell, 8, 1855–1869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat, R., Ahmed, I., & Sheirdil, R. A. (2012). An overview of plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. In Crop Production for Agricultural Improvement (pp. 557–579). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Höfte, M. (1993). Classes of microbial siderophores. In Iron chelation in plants and soil microorganisms (pp. 3–27). San Diego: Academic.

    Chapter  Google Scholar 

  • Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (1994). In W. R. Hensyl (Ed.), Bergey’s manual of determinative bacteriology (9th ed., 1094 pp). Baltimore: Williams & Wilkins.

    Google Scholar 

  • Hong, C. E., Kwon, S. Y., & Park, J. M. (2016). Biocontrol activity of Paenibacillus polymyxa AC-1 against Pseudomonas syringae and its interaction with Arabidopsis thaliana. Microbiological Research, 185, 3–21.

    Article  Google Scholar 

  • Katznelson, H., & Bose, B. (1959). Metabolic activity and phosphate dissolving capability of bacterial isolates from wheat roots in the rhizosphere and non rhizosphere soil. Canadian Journal of Microbiology, 5, 79–85.

    Article  CAS  PubMed  Google Scholar 

  • Knudsen, I. M. B., Hockenhull, J., Funck Jensen, D., Gerhardson, B., Hökeberg, M., et al. (1997). Selection of biological control agents for controlling soil and seed-borne diseases in the field. European Journal of Plant Pathology, 103, 775–784.

    Article  Google Scholar 

  • Kumar, A., Prakash, A., & Johri, B. N. (2011). Bacillus as PGPR in crop ecosystem. In Bacteria in agrobiology: Crop ecosystems (pp. 37–59). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Lal, S., & Tabacchioni, S. (2009). Ecology and biotechnological potential of Paenibacillus polymyxa: A minireview. Indian Journal of Microbiology, 49, 2–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Escudero, F. J., & Mercado-Blanco, J. (2011). Verticillium wilt of olive: A case study to implement an integrated strategy to control a soil-borne pathogen. Plant Soil, 344, 1–50.

    Article  Google Scholar 

  • López-Herrera, C. J., & Zea-Bonilla, T. (2007). Effects of benomyl, carbendazim, fluazinam and thiophanate methyl on white root rot of avocado. Crop Protection, 26, 1186–1192.

    Article  Google Scholar 

  • Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556.

    Article  CAS  PubMed  Google Scholar 

  • Maldonado-González, M. M., Bakker, P. A. H. M., Prieto, P., & Mercado-Blanco, J. (2015a). Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7. Frontiers in Microbiology, 6, 266.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maldonado-González, M. M., Schilirò, E., Prieto, P., & Mercado-Blanco, J. (2015b). Endophytic colonization and biocontrol performance of Pseudomonas fluorescens PICF7 in olive (Olea europaea L.) are determined neither by pyoverdine production nor swimming motility. Environmental Microbiology, 17, 3139–3153.

    Article  PubMed  Google Scholar 

  • Markakis, E. A., Tjamos, S. E., Antoniou, P. P., Paplomatas, E. J., & Tjamos, E. C. (2016). Biological control of Verticillium wilt of olive by Paenibacillus alvei, strain K165. BioControl, 61, 293–303.

    Article  Google Scholar 

  • Marschner, P., Crowley, D., & Yang, C. H. (2004). Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant and Soil, 261, 199–208.

    Article  CAS  Google Scholar 

  • Mercado-Blanco, J. (2015). Pseudomonas strains that exert biocontrol of plant pathogens. In: Pseudomonas. Volume 7: New aspect of Pseudomonas biology (pp. 121–172). London: Springer.

    Google Scholar 

  • Mercado-Blanco, J., & Bakker, P. (2007). Interactions between plants and beneficial Pseudomonas spp.: Exploiting bacterial traits for crop protection. Antonie van Leeuwenhoek, 92, 367–389.

    Article  PubMed  Google Scholar 

  • Mercado-Blanco, J., Rodríguez-Jurado, D., Hervás, A., & Jiménez-Díaz, R. M. (2004). Suppression of Verticillium wilt in olive planting stocks by root-associated fluorescent Pseudomonas spp. Biological Control, 30, 474–486.

    Article  Google Scholar 

  • Moral, J., Jurado, J., & Trapero, A. (2012). Effect of temperature and relative humidity on mycelial growth, conidial germination and fruit infection by Colletotrichum spp. causing olive anthracnose. IOBC-WPRS. Bulletin, 79, 14.

    Google Scholar 

  • Müller, H., Tejedor-González, E., Mercado-Blanco, J., Rodríguez-Jurado, D., Jiménez-Díaz, R. M., & Berg, G. (2007). Effect of the biological control strain Serratia plymuthica HRO-C48 on Verticillium wilt of olive trees cv. Arbequina. In: Fundamental and practical approaches to increase biocontrol efficacy. IOBC/wprs Bulletin, 30, 173–177.

    Google Scholar 

  • Murthy, N., & Bleakley, B. (2012). Simplified method of preparing colloidal chitin used for screening of chitinase-producing microorganisms. The Internet Journal of Microbiology 10, 2. Available online at: http://ispub.com/IJMB/10/2/14186

  • Naik, D. N., Wahidullah, S., & Meena, R. M. (2013). Attenuation of Pseudomonas aeruginosa virulence by marine invertebrate–derived Streptomyces sp. Letters in Applied Microbiology, 56, 197–207.

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Martínez, I., Rodríguez-Moreno, L., Matas, I. M., & Ramos, C. (2007). Strain selection and improvement of gene transfer for genetic manipulation of Pseudomonas savastanoi isolated from olive knots. Research in Microbiology, 158, 60–69.

    Article  PubMed  Google Scholar 

  • Prieto, P., Navarro-Raya, C., Valverde-Corredor, A., Amyotte, S. G., Dobinson, K. F., & Mercado-Blanco, J. (2009). Colonization process of olive tissues by Verticillium dahliae and its in planta interaction with the biocontrol root endophyte Pseudomonas fluorescens PICF7. Microbial Biotechnology, 2, 499–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raza, W., Yuan, J., Ling, N., Huang, Q., & Shen, Q. (2015). Production of volatile organic compounds by an antagonistic strain Paenibacillus polymyxa WR-2 in the presence of root exudates and organic fertilizer and their antifungal activity against Fusarium oxysporum f. sp. niveum. Biological Control, 80, 89–95.

    Article  CAS  Google Scholar 

  • Ruano-Rosa, D., & López-Herrera, C. J. (2009). Evaluation of Trichoderma spp. as biocontrol agents against avocado white root rot. Biological Control, 51, 66–71.

    Article  Google Scholar 

  • Ruano-Rosa, D., & Mercado-Blanco, J. (2015). Combining biocontrol agents and organics amendments to manage soil-Borne phytopathogens. In Organic amendments and soil suppressiveness in plant disease management (pp. 457–478). Cham: Springer.

    Google Scholar 

  • Ruano-Rosa, D., Prieto, P., Rincón, A. M., Gómez-Rodríguez, M. V., Valderrama, R., et al. (2016). Fate of Trichoderma harzianum in the olive rhizosphere: Time course of the root colonization process and interaction with the fungal pathogen Verticillium dahliae. BioControl, 61, 269–282.

    Article  Google Scholar 

  • Rybakova, D., Cernava, T., Köberl, M., Liebminger, S., Etemadi, M., & Berg, G. (2016). Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of Paenibacillus. Plant and Soil. doi:10.1007/s11104-015-2526-1.

  • Ryu, C. M., Farag, M. A., Pare, P., & Kloepper, J. W. (2005). Invisible signals from the underground: bacterial volatiles elicit plant growth promotion and induce systemic resistance. The Plant Pathology Journal, 21, 7–12.

    Article  Google Scholar 

  • Sanei, S. J., & Razavi, S. E. (2011). Suppression of Verticillium wilt of olive by Pseudomonas fluorescens. American Journal of Experimental Agriculture, 1, 294–305.

    Article  Google Scholar 

  • Santoyo, G., Orozco-Mosqueda, M. C., & Govindappa, M. (2012). Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Science and Technology, 22, 855–872.

    Article  Google Scholar 

  • Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160, 47–56.

    Article  CAS  PubMed  Google Scholar 

  • Tjamos, E. C. (1993). Prospects and strategies in controlling Verticillium wilt of olive. Bulletin OEPP/EPPO, 23, 505–512.

    Article  Google Scholar 

  • Tsror, L. (2011). Epidemiology and control of Verticillium wilt on olive. Israel Journal of Plant Sciences, 59, 59–69.

    Article  Google Scholar 

  • Wang, S. L., Chao, C. H., Liang, T. W., & Chen, C. C. (2009). Purification and characterization of protease and chitinase from Bacillus cereus TKU006 and conversion of marine wastes by these enzymes. Marine Biotechnology, 11, 334–344.

    Article  CAS  PubMed  Google Scholar 

  • Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52, 487–511.

    Article  CAS  PubMed  Google Scholar 

  • Whipps, J. M., & Davies, K. G. (2000). Success in biological control of plant pathogens and nematodes by microorganisms. In Biological control: measures of success (pp. 231–270). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Xu, S., & Kim, B. S. (2016). Evaluation of Paenibacillus polymyxa strain SC09-21 for biocontrol of Phytophthora blight and growth stimulation in pepper plants. Tropical Plant Pathology, 1–7.

    Google Scholar 

  • Yamamoto, S., & Harayama, S. (1995). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Applied and Environmental Microbiology, 61, 1104–1109.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, P., Sun, Z. X., Liu, S. Y., Lu, H. X., Zhou, Y., & Sun, M. (2013). Combining antagonistic endophytic bacteria in different growth stages of cotton for control of Verticillium wilt. Crop Protection, 47, 17–23.

    Article  Google Scholar 

  • Zheng, Y., Chen, F., & Wang, M. (2013). Use of Bacillus-based biocontrol agents for promoting plant growth and health. In Bacteria in Agrobiology: Disease Management (pp. 243–258). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs. F. J. López-Escudero and A. Trapero (University of Córdoba, Spain), C. J. López-Herrera and E. Pérez-Artes (IAS-CSIC), C. Ramos (University of Málaga, Spain) and L. Ran (Agricultural University of Hebei, P.R. China) for their gifts of plant pathogens used in this study. Supported by grants P12-AGR667 (Junta de Andalucía, Spain) and RECUPERA 2020 (MINECO-CSIC agreement), both co-funded by ERDF from the EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Mercado-Blanco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ruano-Rosa, D., Valverde-Corredor, A., Gómez-Lama Cabanás, C., Sesmero, R., Mercado-Blanco, J. (2017). What Lies Beneath: Root-Associated Bacteria to Improve the Growth and Health of Olive Trees. In: Lukac, M., Grenni, P., Gamboni, M. (eds) Soil Biological Communities and Ecosystem Resilience. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-63336-7_7

Download citation

Publish with us

Policies and ethics