Skip to main content

Impact of Agricultural Land Management on Soil Bacterial Community: A Case Study in the Mediterranean Area

  • Conference paper
  • First Online:
Soil Biological Communities and Ecosystem Resilience

Abstract

Soil is a complex and dynamic ecosystem whose functionality is related to the equilibrium existing among chemical, physical and biological parameters and the resident microbial communities. Soil microorganisms play a central role in decomposing organic matter, in determining the release of mineral nutrients, and in nutrient cycling, and have direct and indirect effects on both crop growth and quality, as well as on the sustainability of soil productivity. In addition, soil microorganisms substantially contribute to the resistance and resilience of agro-ecosystems to abiotic disturbance and stress. Therefore, changes in microbial communities may directly affect soil ecosystem function since microbes can respond rapidly to environmental changes because of the vastness of microbial biomass and diversity. An increasing number of studies have shown how environmental impacts that cause modifications in microbial community structure and diversity ultimately affect soil biological processes. Agricultural land management is one of most significant anthropogenic activities that substantially alter soil characteristics, including physical, chemical, and biological properties. The present chapter gives a picture of the effect of different agricultural management practices on soil microbial community structure and function. A case study on the effects of tillage and nitrogen fertilization on soil bacterial community structure is also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Martínez, V., Zobeck, T. M., & Allen, V. (2004). Soil microbial, chemical and physical properties in continuous cotton and integrated crop–livestock systems. Soil Science Society of America Journal, 68, 1875–1884.

    Google Scholar 

  • Acosta-Martínez, V., Dowd, S. E., Bell, C. W., Lascano, R., Booker, J. D., Zobeck, T. M. M., & Upchurch, D. R. (2010). Microbial community composition as affected by dryland cropping systems and tillage in a semiarid sandy soil. Diversity, 2, 910–931.

    Google Scholar 

  • Acosta-Martínez, V., Lascano, R., Calderón, F., Booker, J. D., Zobeck, T. M., & Upchurch, D. R. (2011). Dryland cropping systems influence the microbial biomass and enzyme activities in a semiarid sandy soil. Biology and Fertility of Soils, 47, 655–667.

    Article  Google Scholar 

  • Aislabie, J., & Deslippe, J. R. (2013). Soil microbes and their contribution to soil services. In J. R. Dymond (Ed.), Ecosystem services in New Zealand – conditions and trends (pp. 143–161). Lincoln: Manaaki Whenua Press.

    Google Scholar 

  • Allison, S. D., & Martiny, J. B. H. (2008). Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences, 12, 11512–11519.

    Article  Google Scholar 

  • Atlas, R. M., Horowitz, A., Krichevsky, M., & Bej, A. K. (1991). Response of microbial populations to environmental disturbance. Microbial Ecology, 22, 249–256.

    Article  CAS  PubMed  Google Scholar 

  • Bannert, A., Kleineidam, K., Wissing, L., Mueller-Niggemann, C., Vogelsang, V., Welzl, G., Cao, Z., & Schloter, M. (2011). Changes in diversity and functional gene abundances of microbial communities involved in nitrogen fixation, nitrification, and denitrification in a tidal wetland versus paddy soils cultivated for different time periods. Applied Environmental Microbiology, 77, 6109–6116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergsma-Vlami, M., Prins, M. E., & Raaijmakers, J. M. (2005). Influence of plant species on population dynamics, genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp. FEMS Microbiology Ecology, 52, 59–69.

    Article  CAS  PubMed  Google Scholar 

  • Bevivino, A., Paganin, P., Bacci, G., Florio, A., Sampedro Pellicer, M., et al. (2014). Soil bacterial community response to differences in agricultural management along with seasonal changes in a Mediterranean region. PLoS ONE, 9, e105515.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonanomi, G., D'Ascoli, R., Scotti, R., Gaglione, S. A., Caceres, M. G., et al. (2014). Soil quality recovery and crop yield enhancement by combined application of compost and wood to vegetables grown under plastic tunnels. Agriculture Ecosystems and Environment, 192, 1–7.

    Article  CAS  Google Scholar 

  • Botton, S., van Heusden, M., Parsons, J. R., Smidt, H., & van Straalen, N. (2006). Resilience of microbial systems towards disturbances. Critical Review in Microbiology, 32, 101–112.

    Article  CAS  Google Scholar 

  • Buckley, D. H., & Schmidt, T. M. (2003). Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environmental Microbiology, 5, 441–452.

    Article  PubMed  Google Scholar 

  • Chaudhry, V., Rehman, A., Mishra, A., Chauhan, P. S., & Nautiyal, C. S. (2012). Organic and chemical amendments changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microbial Ecology, 64, 450–460.

    Article  PubMed  Google Scholar 

  • Chiarini, L., Bevivino, A., Dalmastri, C., Nacamulli, C., & Tabacchioni, S. (1998). Influence of plant development, cultivar and soil type on microbial colonization of maize roots. Applied Soil Ecology, 8, 11–18.

    Article  Google Scholar 

  • Dalmastri, C., Chiarini, L., Cantale, C., Bevivino, A., & Tabacchioni, S. (1999). Soil type and maize cultivar affect the genetic diversity of maize root-associated Burkholderia cepacia populations. Microbial Ecology, 38, 273–284.

    Article  CAS  PubMed  Google Scholar 

  • De Leij, F. A. A. M., Whipps, J. M., & Lynch, J. M. (1994). The use of colony development for the characterization of bacterial communities in soil and on roots. Microbial Ecology, 27, 81–97.

    Article  PubMed  Google Scholar 

  • De Sanctis, G., Roggero, P. P., Seddaiu, G., Orsini, R., Porter, C. H., & Jones, J. W. (2012). Long-term no tillage increased soil organic carbon content of rain-fed cereal systems in a Mediterranean area. European Journal of Agronomy, 40, 18–27.

    Article  Google Scholar 

  • De Vries, F. T., & Shade, A. (2013). Controls on soil microbial community stability under climate change. Frontiers in Microbiology, 4, 1–16.

    Article  Google Scholar 

  • Delmont, T. O., Robe, P., Cecillon, S., Clark, I. M., Constancias, F., Simonet, P., Hirsch, P. R., & Vogel, T. M. (2011). Accessing the soil metagenome for studies of microbial diversity. Applied Environmental Microbiology, 77, 1315–1324.

    Article  CAS  PubMed  Google Scholar 

  • Di Cello, F., Bevivino, A., Chiarini, L., Fani, R., Paffetti, D., & Tabacchioni, S. (1997). Biodiversity of a Burkholderia cepacia population isolated from maize rhizosphere at different plant growth stages. Applied and Environmental Microbiology, 63, 4485–4493.

    PubMed  PubMed Central  Google Scholar 

  • Dorodnikov, M., Blagodatskaya, E., Blagodatsky, S., Fangmeier, A., & Kuzyakov, Y. (2009). Stimulation of r- vs. K-selected microorganisms by elevated atmospheric CO2 depends on soil aggregate size. FEMS Microbiology Ecology, 69, 43–52.

    Article  CAS  PubMed  Google Scholar 

  • Dupouey, J. L., Dambrine, E., Laffite, J. D., & Moares, C. (2002). Irreversible impact of past land use on forest soils and biodiversity. Ecology, 83, 2978–2984.

    Article  Google Scholar 

  • Fierer, N., Leff, J. W., Adams, B. J., Nielsen, U. N., Bates, S. T., et al. (2012). Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences, 109, 21390–21395.

    Google Scholar 

  • Garland, J. L. (1997). Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiology Ecology, 24, 289–300.

    Article  CAS  Google Scholar 

  • Ghimire, R., Norton, J. B., Stahl, P. D., & Norton, U. (2014). Soil microbial substrate properties and microbial community responses under irrigated organic and reduced-tillage crop and forage production systems. PLoS ONE, 9, e103901.

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffiths, B. S., Bonkowski, M., Roy, J., & Ritz, K. (2001). Functional stability, substrate utilization and biological indicators of soils following environmental impacts. Applied Soil Ecology, 16, 49–61.

    Article  Google Scholar 

  • Hendrix, P. H., Crossley, D. A., & Coleman, D. C. (1990). Soil biota as components of sustainable agro-ecosystem. In C. A. Edwards, R. Lal, P. Madden, R. H. Miller, & G. House (Eds.), Sustainable agricultural systems (pp. 637–654). Soil Water Conservation Society: Iowa.

    Google Scholar 

  • Hobbs, R. J., & Hueneke, L. F. (1992). Disturbance, diversity, and invasion: Implications for conservation. Conservation Biology, 6, 324–337.

    Article  Google Scholar 

  • Houghton, R. A., & Goodale, C. (2004). Effects of land-use change on the carbon balance of terrestrial ecosystems. In R. De Fries, G. Asner, & R. A. Houghton (Eds.), Ecosystems and land use change, geophysical monograph series (Vol. 153, pp. 85–98). Washington, DC: American Geophysical Union.

    Google Scholar 

  • Hugenholtz, P., & Tyson, G. W. (2008). Metagenomics. Nature, 455, 481–484.

    Article  CAS  PubMed  Google Scholar 

  • Janssen, P. H. (2006). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology, 72, 1719–1728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurburg, S. D., & Salles, J. F. (2015). Functional redundancy and ecosystem function – The soil microbiota as a case study. In: Y. H. Lo, J. A. Blanco, S. Roy (Eds.), Agricultural and biological sciences. Biodiversity in ecosystems – Linking structure and function (pp. 29–49).

    Google Scholar 

  • Kirk, J. L., Beaudettea, L. A., Hartb, M., Moutoglisc, P., Klironomos, J. N., Lee, H., & Trevors, J. T. (2004). Methods of studying soil microbial diversity. Journal of Microbiological Methods, 58, 169–188.

    Article  CAS  PubMed  Google Scholar 

  • Krzyżak, J., Wasilkowski, D., Płaza, G. A., Mrozik, A., Brigmon, R. L., & Pogrzeba, M. (2013). Culture methods as indicators of the biological quality of phytostabilized heavy metal-contaminated soil. Environmental Biotechnology, 9, 6–13.

    Google Scholar 

  • Lagomarsino, A., Grego, S., Marhan, S., Moscatelli, M. C., & Kandeler, E. (2009). Soil management modifies micro-scale abundance and function of soil microorganisms in a Mediterranean ecosystem. European Journal of Soil Science, 60, 2–12.

    Article  CAS  Google Scholar 

  • Landi, S., Piccolo, R., Simoncini, S., & Pastorelli, R. (2011). Molecular characterization of the microbial community involved in the carbon cycle in different areas and types of soil management. Environmental Quality, 6, 29–38.

    Google Scholar 

  • Lauber, C. L., Ramirez, K. S., Aanderud, Z., Lennon, J., & Fierer, N. (2013). Temporal variability in soil microbial communities across land-use types. The ISME Journal, 7, 1641–1650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine, U. Y., Teal, T. K., Robertson, G. P., & Schmidt, T. M. (2011). Agriculture’s impact on microbial diversity and associated fluxes of carbon dioxide and methane. The ISME Journal, 5, 1683–1691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., Li, Z., Wang, F., Zou, B., Chen, Y., et al. (2015). Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China. Biology and Fertility of Soils, 51, 207–215.

    Article  CAS  Google Scholar 

  • Luo, X., Fu, X., Yang, Y., Cai, P., Peng, S., et al. (2016). Microbial communities play important roles in modulating paddy soil fertility. Nature Scientific Reports, 6, 20326.

    Article  CAS  Google Scholar 

  • Mathew, R. P., Feng, Y., Githinji, L., Ankumah, R., & Balkcom, K. S. (2012). Impact of no-tillage and conventional tillage systems on soil microbial communities. Applied Environmental Soil Sciences, ID 548620. http://dx.doi.org/10.1155/2012/548620.

  • Michel, H. M., & Williams, M. (2011). Soil habitat and horizon properties impact bacterial diversity and composition. Soil Science Society of America Journal, 75, 1440–1448.

    Article  CAS  Google Scholar 

  • Miller, M., & Dick, R. P. (1995). Thermal stability and activities of soil enzymes influenced by crop rotations. Soil Biology and Biochemistry, 27, 1161–1166.

    Article  CAS  Google Scholar 

  • Myrold, D. D., Zeglin, L. H., & Jansson, J. K. (2014). The potential of metagenomic approaches for understanding soil microbial processes. Soil Science Society of America Journal, 78, 3–10.

    Article  Google Scholar 

  • Nesme, J., Achouak, W., Agathos, S. N., Bailey, M., Baldrian, P., et al. (2016). Back to the future of soil metagenomics. Frontiers in Microbiology, 7, 1–5.

    Article  Google Scholar 

  • Nielsen, M. N., & Winding, A. (2002). Microorganisms as indicators of soil health (Technical Report No. 388). National Environmental Research Institute, Denmark. Available at http://www.dmu.dk/1_viden/2_Publikationer/3_fagrapporter/rapporter/FR388.pdf

  • Øvreås, L. (2000). Population and community level approaches for analyzing microbial diversity in natural environments. Ecology Letters, 3, 236–251.

    Article  Google Scholar 

  • Pane, C., Piccolo, A., Spaccini, R., Celano, G., Villecco, D., & Zaccardelli, M. (2013). Agricultural waste-based composts exhibiting suppressivity to diseases caused by the phytopathogenic soil-borne fungi Rhizoctonia solani and Sclerotinia minor. Applied Soil Ecology, 65, 43–51.

    Article  Google Scholar 

  • Papaleo, M. C., Fondi, M., Maida, I., Perrin, E., Bevivino, A., et al. (2015). Analysis of a pool of small plasmids from soil heterotrophic cultivable bacterial communities. The Open Microbiology Journal, 9, 98–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parfitt, R. L., Scott, N. A., Ross, D. J., Salt, G. J., & Tate, K. R. (2003). Land use change effects on soil C and N transformations in soils of high N status: Comparisons under indigenous forest, pasture and pine plantation. Biogeochemistry, 66, 203–221.

    Article  CAS  Google Scholar 

  • Pastorelli, R., Piccolo, R., Cocco, S., & Landi, S. (2010). mRNA recovery and denitrification gene expression in clay-soil bacterial communities under different agricultural managements. Agrochimica, 54, 179–192.

    CAS  Google Scholar 

  • Paula, F. S., Rodrigues, J. L. M., Zhou, J., Wu, L., Mueller, R. C., et al. (2014). Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities. Molecular Ecology, 23, 2988–2999.

    Article  PubMed  Google Scholar 

  • Peterson, G., Allen, C. R., & Holling, C. S. (1998). Ecological resilience, biodiversity and scale. Ecosystems, 1, 6–18.

    Article  Google Scholar 

  • Pianka, E. R. (1970). On r and K selection. The American Naturalist, 104, 592–597.

    Article  Google Scholar 

  • Preston-Mafham, J., Boddy, L., & Randerson, P. F. (2002). Analysis of microbial, community, functional, diversity, using sole-carbon-source utilisation profiles: a critique. FEMS Microbiology Ecology, 42, 1–14.

    CAS  PubMed  Google Scholar 

  • Ramachandran, V. K., East, A. K., Karunakaran, R., Downie, J. A., & Poole, P. S. (2011). Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics. Genome Biology, 12, R106–R106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi, G., & Sani, R. K. (2011). Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In I. Ahmad, F. Ahmad, & J. Pichtel (Eds.), Microbes and microbial technology: Agricultural and environmental applications (pp. 29–57). New York: Springer.

    Chapter  Google Scholar 

  • Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., et al. (2000). Biodiversity-global biodiversity scenarios for the year 2100. Science, 287, 1770–1774.

    Article  CAS  PubMed  Google Scholar 

  • Seddaiu, G., Icola, I., Farina, R., Orsini, R., Iezzi, G., & Roggero, P. P. (2016). Long term effects of tillage practices and N fertilization in rainfed Mediterranean cropping systems: durum wheat, sunflower and maize grain yield. European Journal of Agronomy, 77, 166–178.

    Article  Google Scholar 

  • Shade, A., Peter, H., Allison, S. D., Baho, D. L., Berga, M., et al. (2012). Fundamentals of microbial community resistance and resilience. Frontiers in Microbiology, 3, 1–19.

    Article  Google Scholar 

  • Shange, R. S., Ankumah, R. O., Ibekwe, A. M., Zabawa, R., & Dowd, S. E. (2012). Distinct soil bacterial communities revealed under a diversely managed agroecosystem. PLoS ONE, 7, e40338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sikorski, J. (2015). The prokaryotic biology of soil. Soil Organisms, 87, 1–28.

    Google Scholar 

  • Smalla, K., Wieland, G., Buchner, A., Zock, A., Parzy, J., Kaiser, S., & Roskot, N. (2001). Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Applied Environmental Microbiology, 67, 4742–4751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staley, J. T., & Konopka, A. (1985). Measurement of in situ activities of non photosynthetic microorganisms in aquatic and terrestrial habitats. Annual Reviews of Microbiology, 39, 321–346.

    Article  CAS  Google Scholar 

  • Stenström, J., Svensson, K., & Johansson, M. (2001). Reversible transition between active and dormant microbial states in soil. FEMS Microbiol Ecology, 36, 93–104.

    Google Scholar 

  • Tago, K., Ishii, S., Nishizawa, T., Otsuka, S., & Senoo, K. (2011). Phylogenetic and functional diversity of denitrifying bacteria isolated from various rice paddy and rice-soybean rotation fields. Microbes and Environments, 26, 30–35.

    Article  PubMed  Google Scholar 

  • Tiedje, J. M., Asuming-Brempong, S., Nusslein, K., Marsh, T. L., & Flynn, S. J. (1999). Opening the black box of soil microbial diversity. Applied Soil Ecology, 13, 109–122.

    Article  Google Scholar 

  • Tilston, E. L., Sizmur, T., Dixon, G. R., Otten, W., & Harris, J. A. (2010). The impact of land-use practices on soil microbes. In G. R. Dixon & E. L. Tilston (Eds.), Soil microbiology and sustainable crop production (pp. 273–295). New York: Springer.

    Chapter  Google Scholar 

  • Torsvik, V., & Øvreås, L. (2002). Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology, 5, 240–245.

    Article  CAS  PubMed  Google Scholar 

  • Van Elsas, J. D., Torsvik, V., Hartmann, A., Øvreås, L., & Jansson, J. K. (2007). The bacteria and archaea in soil. In J. D. Van Elsas, J. K. Jansson, J. T. Trevors (Eds.), Modern soil microbiology (2nd ed, pp. 23–54). Boca Raton: CRC Press.

    Google Scholar 

  • Vida, C., Bonilla, N., de Vicente, A., & Cazorla, F. M. (2016). Microbial profiling of a suppressiveness-induced agricultural soil amended with composted almond shells. Frontiers in Microbiology, 7, 1–14.

    Article  Google Scholar 

  • Westergaard, K., Muller, A. K., Christensen, S., Bloem, J., & Sørensen, S. J. (2001). Effects of tylosin as a disturbance on the soil microbial community. Soil Biology and Biochemistry, 33, 2061–2071.

    Google Scholar 

  • Widenfalk, A., Bertilsson, S., Sundh, I., & Goedkoop, W. (2008). Effects of pesticides on community composition and activity of sediment microbes – Responses at various levels of microbial community organization. Environmental Pollution, 152, 576–584.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by COST Action FP1305 “BioLink: Linking soil biodiversity and ecosystem function in European forests”. The case-study in the Mediterranean Area was funded by MIUR (Integrated Special Fund for Research– FISR) in the frame of the Italian National Project SOILSINK “Climate change and agro-forestry systems, impacts on soil carbon sink and microbial diversity”, and partially supported by MIUR (Research Department of Italian Government) in the framework of the Agreement Program ENEA-CNR (Art. 2, c. 44, Legge 23.12.2009 n. 191 – Legge Finanziaria 2010). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Authors greatly acknowledge the “Azienda Didattico-Sperimentale Pasquale Rosati” in Agugliano, the coordinator of SOILSINK Project Dr. Rosa Francaviglia (CRA-RPS, Rome), the responsible of the experimental site in Agugliano Prof. Pier Paolo Roggero (University of Sassari), and Dr. Roberto Orsini, Dr. Giuseppe Iezzi and Dr. Giuseppe Corti (Polytechnic University of Marche, Ancona, Italy) for providing data on soil physical properties and collecting soil samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamaria Bevivino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bevivino, A., Dalmastri, C. (2017). Impact of Agricultural Land Management on Soil Bacterial Community: A Case Study in the Mediterranean Area. In: Lukac, M., Grenni, P., Gamboni, M. (eds) Soil Biological Communities and Ecosystem Resilience. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-63336-7_5

Download citation

Publish with us

Policies and ethics