Skip to main content

Soil Biodiversity and Tree Crops Resilience

  • Conference paper
  • First Online:
Soil Biological Communities and Ecosystem Resilience

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP))

Abstract

Promoting resilience capacity in agroecosystems is a very promising strategy for the sustainable management of tree crops. Belowground biological communities provide a range of different environmental services, including food webs structure stability and biodiversity conservation in aggregates, that contribute to the maintenance of crop production and effectively respond to external disturbances caused by global change. Aboveground habitats rely on a range of resilient reactions driven by factors including soil biodiversity interacting with dominant plant community species. Nevertheless, the links between soil biodiversity and aboveground resilience in time and space have been only partially studied and defined. Aboveground resilience is known to act on decadal or longer time scales while belowground communities often react on a time scale of a few years. This is the reason why coupling of both resilient reactions has been poorly studied and needs more investigations. Aim of this review is to provide a perspective on the potential of these studies in the management of tree crops, by identifying main drivers and services underpinning the implementation of sustainable strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addiscott, T. M., & Mirza, N. A. (1998). New paradigms for modelling mass transfers in soils. Soil and Tillage Research, 47, 105–109.

    Article  Google Scholar 

  • Adeniyi, A. S. (2010). Effects of slash and burning on soil microbial diversity and abundance in the tropical rainforest ecosystem, Ondo State, Nigeria. African Journal of Plant Science, 4, 322–329.

    Google Scholar 

  • Aerts, R., & Honnay, O. (2011). Forest restoration, biodiversity and ecosystem functioning. BMC Ecology, 11, 29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Akkermans A., Hahn D., & Zoon F. (1989). Interactions between root symbionts, root pathogens and actinorhizal plants. Annals of Forest Science, 46(Suppl), 765s–771s.

    Google Scholar 

  • Antle, J. M., Stoorvogel, J. J., & Valdivia, R. O. (2006). Multiple equilibria, soil conservation investments and the resilience of agricultural systems. Environment and Development Economics, 11, 477–492.

    Article  Google Scholar 

  • Bardgett, R. D. (2002). Causes and consequences of biological diversity in soil. Zoology, 105, 367–374.

    Article  PubMed  Google Scholar 

  • Barnes, A. D., et al. (2014). Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nature Communications, 5, 5351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behie, S. W., Zelisko, P. M., & Bidochka, M. J. (2012). Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science, 336, 1576–1577.

    Article  CAS  PubMed  Google Scholar 

  • Bender, S. F., Wagg, C., & van der Heijden, M. G. A. (2016). An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology and Evolution, 31, 440–452.

    Article  PubMed  Google Scholar 

  • Bennett, J. A., et al. (2017). Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science, 355, 181–184.

    Article  CAS  PubMed  Google Scholar 

  • Bignell D. E., et al. (2005). Below-ground biodiversity assessment: Developing a key functional group approach in best-bet alternatives to blash and burn. In C. A. Palm, S. A. Vosti, P. A. Sanchez, & P. J. Ericksen (Eds), Slash-and-burn agriculture: The search for alternatives (pp. 119–142). New York: Columbia University Press.

    Google Scholar 

  • Bongers, T. (1990). The maturity index, an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83, 14–19.

    Article  PubMed  Google Scholar 

  • Bongers, T., & Ferris, H. (1999). Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology and Evolution, 14, 224–228.

    Article  CAS  PubMed  Google Scholar 

  • Bonkowski, M., & Roy, J. (2005). Soil microbial diversity and soil functioning affect competition among grasses in experimental microcosms. Oecologia, 143, 232–240.

    Article  PubMed  Google Scholar 

  • Botero, C., Dor, R., McCain, C. M., & Safran, R. J. (2013). Environmental harshness is positively correlated with intraspecific divergence in mammals and birds. Molecular Ecology, 23, 259–268.

    Article  PubMed  Google Scholar 

  • Brandon, K., Gorenflo, L. J., Rodrigues, A. S. L., & Waller, R. W. (2005). Reconciling biodiversity conservation, people, protected areas, and agricultural suitability in Mexico. World Development, 33, 1403–1418.

    Article  Google Scholar 

  • Brown, G. G., et al. (1999). Effects of earthworms on plana production in the tropics. In L. Brussaard & P. Hendrix (Eds.), Earthworm management in tropical agroecosystems. Lavelle P (pp. 87–147). Wallingford: CAB International Edition.

    Google Scholar 

  • Brunner, I., Herzog, C., Dawes, M. A., Arend, M., & Sperisen, C. (2015). How tree roots respond to drought. Frontiers in Plant Science, 6, 547.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brussaard, L., Pulleman, M. M., Ouédraogo, E., Abdoulaye Mando, A., & Sixe, J. (2007). Soil fauna and soil function in the fabric of the food web. Pedobiologia, 50, 447–462.

    Article  Google Scholar 

  • Canali, S., et al. (2009). Effect of different management strategies on soil quality of citrus orchards in Southern Italy. Soil Use and Management, 25, 34–42.

    Article  Google Scholar 

  • Carter, M. R. (2004). Researching structural complexity in agricultural soils. Soil and Tillage Research, 79, 1–6.

    Article  Google Scholar 

  • Chen, X., Yang, Y., & Tang, J. (2004). Species-diversified plant cover enhances orchard ecosystem resistance to climatic stress and soil erosion in subtropical hillside. Journal of the Zhejiang University Science, 5, 1191–1198.

    Article  PubMed  Google Scholar 

  • Daniels, R. (2003). Impact of tea cultivation on anurans in the Western Ghats. Current Science, 85, 1415–1422.

    Google Scholar 

  • De Deyn, G. B., & Van der Putten, W. H. (2005). Linking aboveground and belowground diversity. TRENDS in Ecology and Evolution, 20, 625–633.

    Article  PubMed  Google Scholar 

  • Dhandapani, S. (2015). Biodiversity loss asoociated with oil palm plantations in Malaysia: Serving the need versus saving the nature. British Ecological Society, Agriculture Ecology Annual Conference, Queens University, Belfast, UK.

    Google Scholar 

  • Eayre, C. G., Jaffee, B. A., & Zehr, E. I. (1987). Suppression of Criconemella xenoplax by the nematophagous fungus Hirsutella rhossiliensis. Plant Disease, 71, 832–834.

    Article  Google Scholar 

  • Elliott L.F., & Lynch J. M. (1994). Biodiversity and soil resilience. In: D. J. Greenland, & I. Szabolcs (Eds.), Soil resilience and sustainable land use (pp. 353–364). Wallingford: CAB International.

    Google Scholar 

  • Ferris, H., & Bongers, T. (2006). Nematode indicators of organic enrichment. Journal of Nematology, 38, 3–12.

    PubMed  PubMed Central  Google Scholar 

  • Fragoso, C., et al. (1997). Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: The role of earthworms. Applied Soil Ecology, 6, 17–35.

    Article  Google Scholar 

  • Franca, S. C., Gomes-da-Costa, S. M., & Silveira, A. P. D. (2007). Microbial activity and arbuscular mycorrhizal fungal diversity in conventional and organic citrus orchards. Biological Agriculture and Horticulture, 25, 91–102.

    Article  Google Scholar 

  • Giller, P. S. (1996). The diversity of soil communities the ‘poor man’s tropical rain forest’. Biodiversity Conservation, 5, 135–168.

    Article  Google Scholar 

  • Giller, K. E., Beare, M. H., Lavelle, P., Izac, A. M. N., & Swift, M. J. (1997). Agricultural intensification, soil biodiversity and agroecosystem function. Applied Soil Ecology, 6, 3–16.

    Article  Google Scholar 

  • Gobbi, J. A. (2000). Is biodiversity-friendly coffee financially viable? An analysis of five different coffee production systems in western El Salvador. Ecological Economics, 33, 267–281.

    Article  Google Scholar 

  • Gordon, C., Manson, R., Sundberg, J., & Cruz-Angón, A. (2007). Biodiversity, profitability, and vegetation structure in a Mexican coffee agroecosystem. Agriculture, Ecosystems & Environment, 118, 256–266.

    Article  Google Scholar 

  • Gurr, G. M., Wratten, S. D., & Luna, J. M. (2003). Multi-function agricultural biodiversity: Pest management and other benefits. Basic Applied Ecology, 4, 107–116.

    Article  Google Scholar 

  • Hacquard, S., et al. (2013). Laser microdissection and microarray analysis of Tuber melanosporum ectomycorrhizas reveal functional heterogeneity between mantle and Hartig net compartments. Environmental Microbiology, 15, 1853–1869.

    Article  CAS  PubMed  Google Scholar 

  • HÃ¥gvar, S. (1998). The relevance of the Rio-Convention on biodiversity to conserving the biodiversity of soils. Applied Soil Ecology, 9, 1–7.

    Article  Google Scholar 

  • Havlicek E., Mitchell E.A.D. 2014. Soils supporting biodiversity. In J. Dighton & J. A. Krumins (Eds.), Interactions in soil: Promoting plant growth (Biodiversity, Community and Ecosystems, Vol. 1, pp. 27–58). Dordrecht: Springer.

    Google Scholar 

  • Hawksworth, D. L. (1991). The fungal dimension of diversity: Magnitude significance and conservation. Mycological Research, 95, 641–655.

    Article  Google Scholar 

  • Hawksworth, D. L. (2001). The magnitude of fungal diversity: The 1.5 million species estimate revisted. Mycological Research, 105, 1422–1431.

    Article  Google Scholar 

  • Head, I. M., Saunders, J. R., & Pickup, R. W. (1998). Microbial evolution, diversity, and ecology: A decade of ribosomal RNA analysis of uncultivated microorganisms. Microbial Ecology, 35, 1–21.

    Article  CAS  PubMed  Google Scholar 

  • Hohberg, K. (2003). Soil nematode fauna of afforested mine sites: Genera distribution, trophic structure and functional guilds. Applied Soil Ecology, 22, 113–126.

    Article  Google Scholar 

  • Itoh, H., et al. (2014). Bacterial population succession and adaptation affected by insecticide application and soil spraying history. Frontiers in Microbiology, 5, 457.

    Article  PubMed  PubMed Central  Google Scholar 

  • Joschko, M., et al. (2006). Spatial analysis of earthworm biodiversity at the regional scale. Agriculture Ecosystems & Environment, 112, 367–380.

    Article  Google Scholar 

  • Kampichler, C. (1999). Fractal concepts in studies of soil fauna. Geoderma, 88, 283–300.

    Article  Google Scholar 

  • Kellenberger, E. (2001). Exploring the unknown: The silent revolution of microbiology. EMBO Reports, 2, 5–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy, A. C., & Smith, K. L. (1995). Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil, 170, 75–86.

    Article  CAS  Google Scholar 

  • Lal, R. (1997). Degradation and resilience of soils. Philosophical Transactions of the Royal Society of London, B, 352, 997–1010.

    Article  Google Scholar 

  • Lavelle P., & Spain A.V. (2006). Soil ecology (2nd ed., 651p). Amsterdam: Kluwer Scientific Publications.

    Google Scholar 

  • Lavelle, P., et al. (2004). Plant parasite control and soil fauna diversity. CR Academic Science Biology, 327, 629–638.

    Google Scholar 

  • Lavelle, P., et al. (2006). Soil invertebrates and ecosystem services. European Journal of Soil Biology, 42, S3–S15.

    Article  Google Scholar 

  • Lavelle, P., et al. (2016). Ecosystem engineers in a self-organized soil: A review of concepts and future research questions. Soil Science, 181, 91–109.

    Article  CAS  Google Scholar 

  • Legendre, B., et al. (2014). Identification and characterisation of Xylella fastidiosa isolated from coffee plants in France. Journal of Plant Pathology, 96, S4.100.

    Google Scholar 

  • Liang, W., Beattie, G. A. C., Meats, A., & Spooner-Hart, R. (2007). Impact on soil-dwelling arthropods in citrus orchards of spraying horticultural mineral oil, carbaryl or methidathion. Australian Journal of Entomology, 46, 79–85.

    Article  Google Scholar 

  • Lin, B. B. (2011). Resilience in agriculture through crop diversification: Adaptive management for environmental change. BioScience, 61, 183–193.

    Article  Google Scholar 

  • Loconsole, G., et al. (2016). Intercepted isolates of Xylella fastidiosa in Europe reveal novel genetic diversity. European Journal of Plant Pathology, 146, 85–94.

    Article  CAS  Google Scholar 

  • Martelli, G. P., Boscia, D., Porcelli, F., & Saponari, M. (2015). The olive quick decline syndrome in south-east Italy: A threatening phytosanitary emergency. European Journal of Plant Pathology, 144, 235–243.

    Article  Google Scholar 

  • Morris, E. K., et al. (2014). Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecology and Evolution, 4, 3514–3524.

    Article  PubMed  PubMed Central  Google Scholar 

  • Obando, V. (2002). Biodiversidad en Costa Rica: Estado del Conocimiento y Gestión (76 pp). Santo Domingo, Heredia, Editorial INBio: MINAE-SINAC & INBio.

    Google Scholar 

  • Oldeman, L. R., Hakkeling, R. T. A., & Sombroek, W. G. (1990). World map of the status of human induced soil degradation: Explanatory note. InWageningen, Netherlands: International Soil Reference and Information Centre (ISIRC) and Nairobi. Kenya: United Nations Environment Programme (UNEP).

    Google Scholar 

  • Peeters, L. Y. K., Soto-Pinto, L., Perales, H., Montoya, G., & Ishiki, M. (2003). Coffee production, timber, and firewood in traditional and Inga-shaded plantations in Southern Mexico. Agriculture, Ecosystems and Environment, 95, 481–493.

    Article  Google Scholar 

  • Perfecto, I., Vandermeer, J., Mas, A., & Soto, P. L. (2005). Biodiversity, yield, and shade coffee certification. Ecological Economics, 54, 435–446.

    Article  Google Scholar 

  • Rasmann, S., et al. (2005). Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature, 434, 732–737.

    Article  CAS  PubMed  Google Scholar 

  • Roesch, L. F. W., et al. (2007). Pyrosequencing enumerates and contrasts soil microbial diversity. ISME Journal, 1, 283–290.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosello-Mora, R., et al. (2001). The species concept for prokaryotes. FEMS Microbiology Reviews, 25, 39–67.

    Article  Google Scholar 

  • Sanchez P.A., Palm C.A., Vosti S.A., Tomich T.P., Kasyoki J. 2005. Alternatives to slash and burn: Challenge and approaches of an International Consortium. In: C.A. Palm, S. A. Vosti, P. A. Sanchez, & P. J. Ericksen (Eds), Slash-and-burn agriculture: The search for alternatives (pp. 3–40). New York: Columbia University Press.

    Google Scholar 

  • Saponari, M., et al. (2014). Infectivity and transmission of Xylella fastidiosa Salento strain by Philaenus spumarius L. (Hemiptera: Aphrophoridae) in Apulia, Italy. Journal of Economic Entomology, 107, 1316–1319.

    Article  PubMed  Google Scholar 

  • Savilaakso, S., et al. (2014). Systematic review of effects on biodiversity from oil palm production. Environmental Evidence, 3, 4.

    Article  Google Scholar 

  • Schulz, B. (2006). Mutualistic interactions with fungal root endophytes. In B. Schulz, C. Boyle, & T. N. Sieber (Eds.), Microbial root endophytes (pp. 261–279). Berlin: Springer.

    Chapter  Google Scholar 

  • Schulz, B., & Boyle, C. (2005). The endophytic continuum. Mycological Research, 109, 661–686.

    Article  PubMed  Google Scholar 

  • Schwartz, M. W., Bringham, C. A., Hoeksema, J. D., Lyons, K. G., Mills, M. H., & van Mantgem, P. J. (2000). Linking biodiversity to ecosystem function: implications for conservation ecology. Oecologia, 122, 297–305.

    Article  CAS  PubMed  Google Scholar 

  • Soto-Pinto, L., Perfecto, I., & Caballero-Nieto, J. (2002). Shade over coffee: Its effects on berry borer, leaf rust and spontaneous herbs in Chiapas, Mexico. Agroforestry Systems, 55, 37–45.

    Article  Google Scholar 

  • Stirling, G. R., & Mankau, R. (1978). Dactylella oviparasitica, a new fungal parasite of Meloidogyne eggs. Mycologia, 70, 774–783.

    Article  Google Scholar 

  • Torsvik, V., Goksøyr, J., & Daae, F. L. (1990). High diversity in DNA of soil bacteria. Applied Environmental Microbiology, 56, 782–787.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vijay, V., Pimm, S. L., Jenkins, C. N., & Smith, S. J. (2016). The impacts of oil palm on recent deforestation and biodiversity loss. PLOS ONE. doi:10.1371/journal.pone.0159668.

  • Wall, D. H., Bardgett, R. D., & Kelly, E. F. (2010). Biodiversity in the dark. Nature Geoscience, 3, 297–298.

    Article  CAS  Google Scholar 

  • Wall, D. H., Nielsen, U. N., & Six, J. (2015). Soil biodiversity and human health. Nature, 528, 69–76.

    CAS  PubMed  Google Scholar 

  • Wardle, D. A., & Jonsson, M. (2014). Long-term resilience of above- and belowground ecosystem components among contrasting ecosystems. Ecology, 95, 1836–1849.

    Article  PubMed  Google Scholar 

  • Wilson, E. O. (2000). A global biodiversity map. Science, 289, 2279.

    CAS  PubMed  Google Scholar 

  • Yaap, B., Struebig, M. J., Paoli, G., & Pin Koh, L. (2010). Mitigating the biodiversity impacts of oil palm development. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 5, No. 019.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurelio Ciancio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ciancio, A., Gamboni, M. (2017). Soil Biodiversity and Tree Crops Resilience. In: Lukac, M., Grenni, P., Gamboni, M. (eds) Soil Biological Communities and Ecosystem Resilience. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-63336-7_20

Download citation

Publish with us

Policies and ethics