Skip to main content

Potential Role of Beneficial Soil Microorganisms in Plant Tolerance to Abiotic Stress Factors

  • Conference paper
  • First Online:
Soil Biological Communities and Ecosystem Resilience

Abstract

Abiotic stress conditions such as drought, salinity and extreme temperatures are an increasing problem in agriculture. Research efforts are aimed to develop strategies to make agriculture more resilient and to mitigate the stress effects on crop production. In this context, the use of root-associated microbial communities able to improve plant tolerance is attracting increasing attention. In this chapter, we will offer an overview of the researches on the use of soil beneficial microorganisms, focusing mainly on mycorrhizal fungi and biocontrol agents such as Trichoderma species, to improve plant tolerance to different abiotic stresses (e.g. water stress, salinity, extreme temperatures).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfano, G., Ivey, M. L. L., Cakir, C., Bos, J. I. B., Miller, S. A., Madden, L. V., et al. (2007). Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Phytopathology, 97, 429–437.

    Article  CAS  PubMed  Google Scholar 

  • Atkinson, N. J., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 63, 3523–3543.

    Article  CAS  PubMed  Google Scholar 

  • Augé, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3–42.

    Article  Google Scholar 

  • Augé, R. M., Stodola, A. J. W., Tims, J. E., & Saxton, A. M. (2001). Moisture retention properties of a mycorrhizal soil. Plant and Soil, 230, 87–97.

    Article  Google Scholar 

  • Augé, R. M., Toler, H. D., & Saxton, A. M. (2015). Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza, 25, 13–24.

    Article  PubMed  Google Scholar 

  • Bae, H., Sicher, R. C., Kim, M. S., Kim, S.-H., Strem, M. D., Melnick, R. L., & Bailey, B. A. (2009). The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany, 60, 3279–3295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balestrini, R., Lumini, E., Borriello, R., Bianciotto, V. (2015) Plant-soil biota interactions. In Chapter 11: Soil microbiology, ecology and biochemistry (4th ed.). Elsevier: Academic.

    Google Scholar 

  • Baltruschat, H., Fodor, J., Harrach, B. D., Niemczy, K. E., Barna, B., et al. (2008). Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytologist, 180, 501–510.

    Article  CAS  PubMed  Google Scholar 

  • Bárzana, G., Aroca, R., Paz, J. A., Chaumont, F., Martinez-Ballesta, M. C., et al. (2012). Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Annals of Botany, 109, 1009–1017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bárzana, G., Aroca, R., Bienert, P., Chaumont, F., & Ruiz-Lozano, J. M. (2014). New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Molecular Plant-Microbe Interactions, 27, 349–363.

    Article  PubMed  CAS  Google Scholar 

  • Bárzana, G., Aroca, R., & Ruiz-Lozano, J. M. (2015). Localized and non-localized effects of arbuscular mycorrhizal symbiosis on accumulation of osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial root drying. Plant, Cell & Environment, 38, 1613–1627.

    Article  CAS  Google Scholar 

  • Bischof, R. H., Ramoni, J., & Seiboth, B. (2016). Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microbial Cell Factories, 15, 106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boyer, J. S., Byrne, P., Cassman, K. G., Cooper, M., Delmer, D., Greene, T., et al. (2013). The U.S. drought of 2012 in perspective: A call to action. Global Food Security, 2, 139–143.

    Article  Google Scholar 

  • Brotman, Y., Landau, U., Cuadros-Inostroza, A., Takayuki, T., Fernie, A. R., et al. (2013). Trichoderma-plant root colonization: Escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathogens, 9, e1003221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bucher, M., Hause, B., Krajinski, F., & Küster, H. (2014). Through the doors of perception to function in arbuscular mycorrhizal symbioses. New Phytologist, 204, 833–840.

    Article  CAS  PubMed  Google Scholar 

  • Bunn, R., Lekberg, I., & Zabinski, C. (2009). Arbuscular mycorrhizal fungi ameliorate temperature stress in thermophilic plants. Ecology, 90, 1378–1388.

    Article  PubMed  Google Scholar 

  • Calvo-Polanco, M., Molina, S., Zamarreno, A. M., Garcıa-Mina, J. M., & Aroca, R. (2014). The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants. Plant and Cell Physiology, 55, 1017–1029.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, B. (2012). The global imperative. Drought affects us all. In Perspectives: Legislating change. What should governments do to enhance sustainable agriculture and mitigate droughts? Nature, 501, Outlook Agriculture and Drought, s12–s14.

    Google Scholar 

  • Caporale, A. G., Sommella, A., Lorito, M., Lombardi, N., Azam, S. M. G. G., Pigna, M., & Ruocco, M. (2014). Trichoderma spp. alleviate phytotoxicity in lettuce plants (Lactuca sativa L.) irrigated with arsenic-contaminated water. Journal of Plant Physiology, 171, 1378–1384.

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekaran, M., Kim, K., Krishnamoorthy, R., Walitang, D., Sundaram, S., et al. (2016). Mycorrhizal symbiotic efficiency on C3 and C4 plants under salinity stress – A meta-analysis. Frontiers in Microbiology, 7, 1246.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatzidaki, E., & Ventura, F. (2010). Adaptation to climate change and mitigation strategies in cultivated and natural environments. A review. Italian Journal of Agrometeorology, 3, 21–42.

    Google Scholar 

  • Chen, S., Jin, W., Liu, A., Zhang, S., Liuc, D., et al. (2013). Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Scientia Horticulturae, 160, 222–229.

    Article  CAS  Google Scholar 

  • Chitarra, W., Balestrini, R., Vitali, M., Pagliarani, C., Perrone, I., et al. (2014). Gene expression in vessel-associated cells upon xylem embolism repair in Vitis vinifera L. petioles. Planta, 239, 887–899.

    Article  CAS  PubMed  Google Scholar 

  • Chitarra, W., Pagliarani, C., Maserti, B., Lumini, E., Siciliano, I., et al. (2016). Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiology, 171, 1009–1023.

    PubMed  PubMed Central  Google Scholar 

  • Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J. Y., & Lee, Y. H. (2008). 2R,3R-Butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction od systemic tolerance to drought in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 21, 1067–1075.

    Article  CAS  PubMed  Google Scholar 

  • Coleman-Derr, D., & Tringe, S. G. (2014). Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance. Frontiers in Microbiology, 5, 283.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornejo, P., Pérez-Tienda, J., Meier, S., Valderas, A., Borie, F., Azcón-Aguilar, C., et al. (2013). Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments. Soil Biology and Biochemestry, 57, 925–928.

    Article  CAS  Google Scholar 

  • Corradi, N., & Bonfante, P. (2012). The arbuscular mycorrhizal symbiosis: Origin and evolution of a beneficial plant infection. PLoS Pathogens, 8, e1002600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daryanto, S., Wang, L., Jacinthe, P.A. (2016). Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review. Agricultural Water Management (in press). doi:10.1016/j.agwat.2016.04.022.

  • De Palma, M., D’Agostino, N., Proietti, S., Bertini, L., Lorito, M., et al. (2016). Suppression subtractive hybridization analysis provides new insights into the tomato (Solanum lycopersicum L.) response to the plant probiotic microorganism Trichoderma longibrachiatum MK1. Journal of Plant Physiology, 190, 79–94.

    Article  PubMed  CAS  Google Scholar 

  • Dicke, M. (2016). Plant phenotypic plasticity in the phytobiome: a volatile issue. Current Opinion in Plant Biology, 32, 17–23.

    Article  PubMed  Google Scholar 

  • Dietz, S., von Bülow, J., Beitz, E., & Nehls, U. (2011). The aquaporin gene family of the ectomycorrhizal fungus Laccaria bicolor: Lessons for symbiotic functions. New Phytologist, 190, 927–940.

    Article  CAS  PubMed  Google Scholar 

  • Dugas, D. V., Monaco, M. K., Olsen, A., Klein, R. R., Kumari, S., Ware, D., et al. (2011). Functional annotation of the transcriptome of Sorghum bicolor in response toosmotic stress and abscisic acid. BMC Genomics, 12, 514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elhindi, K. M., El-Din, A. S., & Elgorban, A. M. (2016). The impact of arbuscular mycorrhizal fungiin mitigating salt-induced adverse effects in sweetbasil (Ocimum basilicum L.). Saudi Journal of Biological Sciences (in press). doi:10.1016/j.sjbs.2016.02.010.

  • Estrada, B., Aroca, R., Maathuis, F. J. M., Barea, J. M., & Ruiz-Lozano, J. M. (2013a). Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell & Environment, 36, 1771–1782.

    Article  CAS  Google Scholar 

  • Estrada, B., Aroca, R., Barea, J. M., & Ruiz-Lozano, J. M. (2013b). Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Science, 201–202, 42–51.

    Article  PubMed  CAS  Google Scholar 

  • Fleury, D., Jefferies, S., Kuchel, H., & Langridge, P. (2010). Genetic and genomic tools to improve drought tolerance in wheat. Journal of Experimental Botany, 61, 3211–3222.

    Article  CAS  PubMed  Google Scholar 

  • Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6, 269–279.

    Article  CAS  PubMed  Google Scholar 

  • Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., et al. (2011). Solutions for a cultivated planet. Nature, 478, 337–342.

    Article  CAS  PubMed  Google Scholar 

  • Galmés, J., Conesa, M. À., Ochogavía, J. M., Perdomo, J. A., Francis, D., et al. (2011). Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. Plant, Cell & Environment, 34, 245–260.

    Article  CAS  Google Scholar 

  • Galmés, J., Perdomo, J. A., Flexas, J., & Whitney, S. M. (2013). Photosynthetic characterization of Rubisco transplantomic lines reveals alterations on photochemistry and mesophyll conductance. Photosynthesis Research, 115, 153–166.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, M. E., & Medina, V. (2016). Drought adaptation mechanisms should guide experimental design. Trends in Plant Science, 21, 639–647.

    Article  CAS  PubMed  Google Scholar 

  • González-Guzmán, M., Rodríguez, L., Lorenzo-Orts, L., Pons, C., Sarrión-Perdigones, A., et al. (2014). Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance. Journal of Experimental Botany, 65, 4451–4464.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hazzoumi, Z., Moustakime, Y., El hassan, E., & Joutei, K. A. (2015). Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum L). Chemical and Biological Technologies in Agriculture, 2, 10.

    Google Scholar 

  • Hirayama, T., & Shinozaki, K. (2010). Research on plant abiotic stress responses in the post-genome era: Past, present and future. The Plant Journal, 61, 1041–1052.

    Article  CAS  PubMed  Google Scholar 

  • Iovieno, P., Punzo, P., Guida, G., Mistretta, C., Van Oosten, M. J., et al. (2016). Transcriptomic changes drive physiological responses to progressive drought stress and rehydration in tomato. Frontiers in Plant Science, 7, 371.

    Article  PubMed  PubMed Central  Google Scholar 

  • Juniper, S., & Abbott, L. K. (2006). Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza, 16, 371–379.

    Article  CAS  PubMed  Google Scholar 

  • Kamara, A. Y., Menkir, A., Badu-Apraku, B., & Ibikunie, O. (2003). The influence of drought stress on growth, yield and yield components of selected maize genotypes. Journal of Agricultural Science, 141, 43–50.

    Article  Google Scholar 

  • Kakumanu, A., Ambavaram, M. M., Klumas, C., Krishnan, A., Batlang, U., et al. (2012). Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. Plant Physiology, 160, 846–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushal, M., & Wani, S. P. (2016). Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Annals of Microbiology, 66, 35–42.

    Article  CAS  Google Scholar 

  • Khalvati, M. A., Mozafar, A., & Schmidhalter, U. (2005). Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biology, 7, 706–712.

    Article  CAS  PubMed  Google Scholar 

  • Kohler, A., Kuo, A., Nagy, L. G., Morin, E., Barry, K. W., et al. (2015). Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics, 47, 410–415.

    Article  CAS  PubMed  Google Scholar 

  • Krasensky, J., & Jonak, C. (2016). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63, 1593–1608.

    Article  CAS  Google Scholar 

  • Lareen, A., Burton, F., & Schäfer, P. (2016). Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 90, 575–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafitte, H. R., Yongsheng, G., Yan, S., & Li, Z. H. (2007). Whole plant responses, key processes, and adaptation to drought stress: The case of rice. Journal of Experimental Botany, 58, 169–175.

    Article  CAS  PubMed  Google Scholar 

  • Lenoir, I., Fontaine, J., & Sahraoui, A. L. H. (2016). Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochemistry, 123, 4–15.

    Article  CAS  PubMed  Google Scholar 

  • Lesk, C., Rowhani, P., & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529, 84–87.

    Article  CAS  PubMed  Google Scholar 

  • Li, T., Hu, Y. J., Hao, Z. P., Li, H., & Chen, B. D. (2013a). Aquaporin genes GintAQPF1 and GintAQPF2 from Glomus intraradices contribute to plant drought tolerance. Plant Signal & Behavior, 8, e24030.

    Article  CAS  Google Scholar 

  • Li, T., Hu, Y. J., Hao, Z. P., Li, H., Wang, Y. S., & Chen, B. D. (2013b). First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist, 197, 617–630.

    Article  CAS  PubMed  Google Scholar 

  • Martin, F., Aerts, A., Ahren, D., Brun, A., Danchin, E. G. J., Duchaussoy, F., et al. (2008). Symbiosis insights from the genome of the mycorrhizal basidiomycete Laccaria bicolor. Nature, 452, 88–92.

    Article  CAS  PubMed  Google Scholar 

  • Martin, F., Kohler, A., Murat, C., Balestrini, R., Coutinho, P. M., Jaillon, O., et al. (2010). Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature, 464, 10331038.

    Google Scholar 

  • Mastouri, F., Bjorkman, T., & Harman, G. E. (2010). Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 100, 1213–1221.

    Article  PubMed  CAS  Google Scholar 

  • Mastouri, F., Bjorkman, T., & Harman, G. E. (2012). Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit. Molecular Plant-Microbe Interactions, 25, 1264–1271.

    Article  CAS  PubMed  Google Scholar 

  • Maurel, C., Boursiac, Y., Luu, D. T., Santoni, V., Shahzad, Z., & Verdoucq, L. (2015). Aquaporins in plants. Physiology Review, 95, 1321–1358.

    Article  CAS  Google Scholar 

  • Mayak, S., Tirosha, T., & Glick, B. R. (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 42, 565–572.

    Article  CAS  PubMed  Google Scholar 

  • McAdam, S. A. M., Brodribb, T. J., & Ross, J. J. (2016). Shoot-derived abscisic acid promotes root growth. Plant Cell and Environment, 39, 652–659.

    Article  CAS  Google Scholar 

  • Meier, S., Cornejo, P., Cartes, P., Borie, F., Medina, J., & Azcón, R. (2015). Interactive effect between Cu-adapted arbuscular mycorrhizal fungi and biotreated agrowaste residue to improve the nutritional status of Oenothera picensis growing in Cu-polluted soils. Journal of Plant Nutrition and Soil Science, 178, 126–135.

    Article  CAS  Google Scholar 

  • Millar, N. S., & Bennet, A. E. (2016). Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi. Oecologia, 182, 625–641.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mo, Y., Wang, Y., Yang, R., Zheng, J., Liu, C., Li, H., Ma, J., Zhang, Y., Wei, C., & Zhang, X. (2016). Regulation of plant growth, photosynthesis, antioxidation and osmosis by an arbuscular mycorrhizal fungus in watermelon seedlings under well-watered and drought conditions. Frontiers in Plant Science, 7, 644.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morán-Diez, E., Rubio, B., Domïnguez, S., Hermosa, R., Monte, E., & Nicolás, C. (2012). Transcriptomic response of Arabidopsis thaliana after 24h incubation with the biocontrol fungus Trichoderma harzianum. Journal of Plant Physiology, 169, 614–620.

    Article  PubMed  CAS  Google Scholar 

  • Navarro, J. M., Pérez-Tornero, O., & Morte, A. (2014). Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. Journal of Plant Physiology, 171, 76–85.

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Ródenas, A., Ruíz-Lozano, J. M., Kaldenhoff, R., & Morte, A. (2012). The aquaporin TcAQP1 of the desert truffle Terfezia claveryi is a membrane pore for water and CO(2) transport. Molecular Plant-Microbe Interaction, 25, 259–266.

    Article  CAS  Google Scholar 

  • Ortiz, N., Armada, E., Duque, E., Roldán, A., & Azcón, R. (2015). Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: Effectiveness of autochthonous or allochthonous strains. Journal of Plant Physiology, 174, 87–96.

    Article  CAS  PubMed  Google Scholar 

  • Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L. S. P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5, Article 86.

    Google Scholar 

  • Osman, M. E. H., Kasim, W. A., Omar, M. N., Abd El-Daim, I. A., Bejai, S., & Meijer, J. (2013). Impact of bacterial priming on some stress tolerance mechanisms and growth of cold stressed wheat seedlings. International Journal of Plant Biology, 4, e8.

    Article  CAS  Google Scholar 

  • Pandey, P., Ramegowda, V., & Senthil-Kumar, M. (2015). Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Frontiers in Plant Science, 6, 723.

    Google Scholar 

  • Pandey, V., Ansari, M. W., Tula, S., Yadav, S., Sahoo, R. K., et al. (2016). Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes. Planta, 243, 1251–1264.

    Article  CAS  PubMed  Google Scholar 

  • Pedranzani, H., Rodríguez-Rivera, M., Gutiérrez, M., Porcel, R., Hause, B., & Ruiz-Lozano, J. M. (2016). Arbucular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza, 26, 141–152.

    Article  CAS  PubMed  Google Scholar 

  • Perrone, I., Gambino, G., Chitarra, W., Vitali, M., Pagliarani, C., Riccomagno, N., et al. (2012). The grapevine root-specific aquaporin VvPIP2;4 n controls root hydraulic conductance and leaf gexchange upon irrigation but not under water stress. Plant Physiology, 160, 965–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peter, M., Kohler, A., Ohm, R. A., Kuo, A., Krützmann, J., Morin, E., et al. (2016). Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum. Nature Communication. doi:10.1038/ncomms12662.

  • Poosapati, S., Ravulapalli, P. D., Tippirishetty, N., Vishwanathaswamy, D. K., & Chunduri, S. (2014). Selection of high temperature and salinity tolerant Trichoderma isolates with antagonistic activity against Sclerotium rolfsii. SpringerPlus, 3, 641.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porcel, R., Azcón, R., & Ruiz-Lozano, J. M. (2004). Evaluation of the role of genes encoding for Δ1-pyrroline-5-carboxylate synthetase (P5CS) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. Physiology and Molecular Plant Pathology, 65, 211–221.

    Article  CAS  Google Scholar 

  • Porcel, R., Aroca, R., Azcón, R., & Ruiz-Lozano, J. M. (2006). PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Molecular Biology, 60, 389–404.

    Article  CAS  PubMed  Google Scholar 

  • Porcel, R., Aroca, R., & Ruíz-Lozano, J. M. (2012). Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development, 32, 181–200.

    Article  CAS  Google Scholar 

  • Porras-Soriano, A., Soriano-Martín, M. L., Porras-Piedra, A., & Azcón, R. (2009). Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. Journal of Plant Physiology, 166, 1350–1359.

    Article  CAS  PubMed  Google Scholar 

  • Qi, W., & Zhao, L. (2013). Study of the siderophore-producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. Journal of Basic Microbiology, 53, 355–364.

    Article  CAS  PubMed  Google Scholar 

  • Rampino, P., Pataleo, S., Gerardi, C., & Perotta, C. (2006). Drought stress responses in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant, Cell & Environment, 29, 2143–2152.

    Article  CAS  Google Scholar 

  • Rolli, E., Marasco, R., Vigani, G., Ettoumi, B., Mapelli, F., et al. (2015). Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environmental Microbiology, 17, 316–331.

    Article  PubMed  Google Scholar 

  • Rojas-Tapias, D., Moreno-Galván, A., Pardo-Díaz, S., Obando, M., Rivera, D., & Bonilla, R. (2012). Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Applied Soil Ecology, 61, 264–272.

    Article  Google Scholar 

  • Rubio, M. B., Quijada, N. M., Pérez, E., Domínguez, S., Monte, E., & Hermosa, R. (2014). Identifying beneficial qualities of Trichoderma parareesei for plants. Applied and Environmental Microbiology, 80, 1864–1873.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruiz-Lozano, J. M., & Azcón, R. (1996). Mycorrhizal colonization and drought stress as factors affecting nitrate reductase activity in lettuce plants. Agriculture, Ecosystems & Environment, 60, 175–181.

    Google Scholar 

  • Ruiz-Lozano, J. M., Collados, C., Barea, J. M., & Azcón, R. (2001). Clonig of cDNAs encoding SODs from lettuce plants which show differential regulation by arbuscular mycorhizal symbiosis and by drought stress. Journal of Experimental Botany, 52, 2241–2242.

    Google Scholar 

  • Ruiz-Lozano, J. M. (2003). Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza, 13, 309–317.

    Google Scholar 

  • Ruiz-Lozano, J. M., & Aroca, R. (2010). Host response to osmotic stresses: Stomatal behavior and water use efficiency or arbuscular mycorrhizal plants. In Arbuscular mycorrhiza: physiology and function (pp. 239–256). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Ruiz-Lozano, J. M., Aroca, R., Zamarreño, A. M., Molina, S., Andreo-Jiménez, B., et al. (2016). Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant, Cell & Environment, 39, 441–452.

    Article  CAS  Google Scholar 

  • Salazar, C., Hernández, C., & Pino, M. T. (2015). Plant water stress: Associations between ethylene and abscisic acid response. Chilean Journal of Agricultural Research, 75(Suppl. 1).

    Google Scholar 

  • Sánchez-Romera, B., Ruiz-Lozano, J. M., Zamarreño, Á. M., García-Mina, J. M., & Aroca, R. (2016). Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought. Mycorrhiza, 26, 111–122.

    Article  PubMed  CAS  Google Scholar 

  • Sandhya, V., Ali, S. K. Z., Grover, M., Reddy, G., & Venkateswarlu, B. (2009). Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biology & Fertility of Soils, 46, 17–26.

    Article  CAS  Google Scholar 

  • Savvides, A., Ali, S., Tester, M., & Fotopoulos, V. (2016). Chemical priming against multiple abiotic stresses: Mission possible? Trends in Plant Science, 21, 329–340.

    Article  CAS  PubMed  Google Scholar 

  • Schlaeppi, K., & Bulgarelli, D. (2014). The plant microbiome at work. Molecular Plant-Microbe Interaction, 28, 212–217.

    Article  CAS  Google Scholar 

  • Sheffield, J., et al. (2012). Little change in global drought over the past 60 years. Nature, 491, 435–438.

    Article  CAS  PubMed  Google Scholar 

  • Singh, A., Ganapathysubramanian, B., Singh, A. K., & Sarkar, S. (2016). Machine learning for high-throughput stress phenotyping in plants. Trends in Plant Science, 21, 110–124.

    Google Scholar 

  • Secchi, F., Pagliarani, C., Zwieniecki, M.A. (2016). The funtional role of xylem parenchyma cells and aquaporins during recovery from severe water stress. Plant, Cell & Environment (in press). doi:10.1111/pce.12831.

  • Secchi, F., Perrone, I., Chitarra, W., Zwieniecka, A. K., Lovisolo, C., & Zwieniecki, M. A. (2013). The dynamics of embolism refilling in abscisic acid (ABA)deficient tomato plants. International Journal of Molecular Sciences, 14, 359–377.

    Article  CAS  Google Scholar 

  • Sewelam, N., Oshima, Y., Mitsuda, N., & Ohme-Takagi, M. (2014). A step towards understanding plant responses to multiple environmental stresses: a genome-wide study. Plant, Cell & Environment, 37, 2024–1035.

    Article  CAS  Google Scholar 

  • Sheffield, J., Wood, E. F., & Roderick, M. L. (2012a). Little change in global drought over the past 60 years. Nature, 491, 435–443.

    Article  CAS  PubMed  Google Scholar 

  • Soda, N., Wallace, S., & Karan, R. (2015). Omics study for abiotic stress responses in plants. Advances in Plants & Agriculture Research, 2, 00037.

    Google Scholar 

  • Srivastava, P. K., Vaish, A., Dwivedi, S., Chakrabarty, D., Singh, N., & Tripathi, R. D. (2011). Biological removal of arsenic pollution by soil fungi. Science of the Total Environment, 409, 2430–2442.

    Article  CAS  PubMed  Google Scholar 

  • Staudinger, C., Mehmeti-Tershani, V., Gil-Quintana, E., Gonzalez, E. M., Hofhansl, F., Bachmann, G., et al. (2016). Evidence for a rhizobia-induced drought stress response strategy in Medicago truncatula. Journal of Proteomics, 136, 202–213.

    Article  CAS  PubMed  Google Scholar 

  • Tamayo, E., Gómez-Gallego, T., Azcón-Aguilar, C., & Ferrol, N. (2014). Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Frontiers in Plant Science, 5, 547.

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmusk, S., & Wagner, E. G. (1999). The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Molecular Plant Microbe Interaction, 12, 951–959.

    Article  CAS  Google Scholar 

  • Timmusk, S., Timmusk, K., & Behers, L. (2013). Rhizobacterial plant drought stress tolerance enhancement: Towards sustainable water resource management and food security. Journal of Food Security, 1, 6–9.

    Google Scholar 

  • Timmusk, S., Abd El-Daim, I. A., Copolovici, L., Tanilas, T., Kännaste, A., Behers, L., et al. (2014). Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: Enhanced biomass production and reduced emissions of stress volatiles. PLoS ONE, 9, e96086.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tisserant, E., Malbreil, M., Kuo, A., Kohler, A., Symeonidi, A., Balestrini, R., et al. (2013). Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences, USA, 110, 20117–20122.

    Article  CAS  Google Scholar 

  • Tombesi, S., Nardini, A., Frioni, T., Soccolini, M., Zadra, C., et al. (2015). Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Scientific Reports, 5, 12449.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi, R. D., Srivastava, S., Mishra, S., Singh, N., Tuli, R., et al. (2007). Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnology, 25, 158–165.

    Article  CAS  Google Scholar 

  • Tripathi, P., Singh, P. C., Mishra, A., Chaudhry, V., Mishra, S., Tripathi, R. D., & Nautiyal, C. S. (2013). Trichoderma inoculation ameliorates arsenic induced phytotoxic changes in gene expression and stem anatomy of chickpea (Cicer arietinum). Ecotoxicology and Environmental Safety, 89, 8–14.

    Google Scholar 

  • van der Heijden, M. G. A., Martin, F. M., Selosse, M. A., & Sanders, I. R. (2015). Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytologist, 205, 1406–1423.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W. X., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218, 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Yang, S., Zhang, Z., Xue, Y., et al. (2014). Arbuscular mycorrhizal fungi increase salt tolerance of apple seedlings. Botanical Studies, 55, 70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yildirim, E., Taylor, A.G., Spittler, T.D. (2006). Ameliorative effects of biological treatments on growth of squash plants under salt stress. Science Horticulture 111, 1-6.

    Google Scholar 

  • Zeilenger, S., Gruber, S., Bansal, R., & Mukherjee, P. K. (2016). Secondary metabolism in Trichoderma – Chemistry meets genomics. Fungal Biology Reviews, 30, 74–90.

    Article  Google Scholar 

  • Zhang, W. P., Jiang, B., Li, W. G., Song, H., Yu, Y. S., & Chen, J. F. (2009). Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Science Horticulture, 122, 200–208.

    Article  CAS  Google Scholar 

  • Zhao, L., Wang, F., Zhang, Y., & Zhang, J. (2014). Involvement of Trichoderma asperellum strain T6 in regulating iron acquisition in plants. Journal of Basic Microbiology, 54, S115–S124.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, X. C., Song, F. B., & Xu, H. W. (2010a). Effects of arbuscular mycorrhizal fungi on photosynthetic characteristics of maize under low temperature stress. Acta Ecologica Sinica, 21, 470–475.

    CAS  Google Scholar 

  • Zhu, X. C., Song, F. B., & Xu, H. W. (2010b). Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza, 20, 325–332.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work has in part been funded by the AQUA project (Progetto Premiale, CNR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella Balestrini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Balestrini, R., Chitarra, W., Fotopoulos, V., Ruocco, M. (2017). Potential Role of Beneficial Soil Microorganisms in Plant Tolerance to Abiotic Stress Factors. In: Lukac, M., Grenni, P., Gamboni, M. (eds) Soil Biological Communities and Ecosystem Resilience. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-63336-7_12

Download citation

Publish with us

Policies and ethics