Skip to main content

Arbuscular Mycorrhizal Fungal Communities Pushed Over the Edge – Lessons from Extreme Ecosystems

  • Conference paper
  • First Online:
Soil Biological Communities and Ecosystem Resilience

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP))

Abstract

The diversity and structure of soil microbial communities are crucial elements in understanding the ecological impacts of rapidly changing environments. One important group of soil microbes is the ubiquitous plant symbiotic arbuscular mycorrhizal (AM) fungi. Their diverse communities are shaped by complex interactions of their abiotic and biotic environments. Locally extreme ecosystems have proven to be useful for natural long-term experiments in the ecology and evolution of AM fungi, giving an insight into much-needed processes of adaptation and acclimation of natural communities to abiotic stress. For example, data from natural CO2 springs (mofettes) show that when exposed to extreme long-term stress (soil hypoxia and elevated soil CO2 concentrations) specific and temporary stable AM fungal communities form with a high abundance of specialised, stress-tolerant taxa. Moreover, in both natural– and human-impacted ecosystems there are several such cases. This chapter covers a wide range of extremes (abiotic stresses) in the pedosphere, from high to low temperatures, drought and floods, hypoxia, salinity, and soil pollution. An overview of several specific stressed environments where AM fungal community ecology has been studied is presented. In some of these cases, locally extreme environments have already been used and could further serve as a powerful tool to study slow ecological and evolutionary processes that normally require long-term observations and experiments to study them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The names from the original papers have been used in this Chapter, as some authors are following the nomenclature preceding the major modifications published by Schüßler and Walker (2010), and Oehl et al. (2011). See also Öpik et al. (2013) for comparison between names.

References

  • Al-Yahya’ei, M. N., Oehl, F., Vallino, M., Lumini, E., Redecker, D., Wiemken, A., & Bonfante, P. (2010). Unique arbuscular mycorrhizal fungal communities uncovered in date palm plantations and surrounding desert habitats of Southern Arabia. Mycorrhiza, 21, 195–209.

    Article  PubMed  PubMed Central  Google Scholar 

  • Appoloni, S., Lekberg, Y., Tercek, M. T., Zabinski, C. A., & Redecker, D. (2008). Molecular community analysis of arbuscular mycorrhizal fungi in roots of geothermal soils in Yellowstone National Park (USA). Microbial Ecology, 56, 649–659.

    Article  PubMed  Google Scholar 

  • Baar, J., Paradi, I., Lucassen, E. C. H. E. T., Hudson-Edwards, K. A., Redecker, D., Roelofs, J. G. M., & Smolders, A. J. P. (2011). Molecular analysis of AMF diversity in aquatic macrophytes: A comparison of oligotrophic and utra-oligotrophic lakes. Aquatic Botany, 94, 53–61.

    Article  CAS  Google Scholar 

  • Clapp, J. P., Young, J. P. W., Merryweather, J. W., & Fitter, A. H. (1995). Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytologist, 130, 259–265.

    Article  Google Scholar 

  • Daniell, T. J., Husband, R., Fitter, A. H., & Young, J. P. W. (2001). Molecular diversity of arbuscular mycorrhizal fungi colonizing arable crops. FEMS Microbiology Ecology, 36, 203–209.

    Article  CAS  PubMed  Google Scholar 

  • del Val, C., Barea, J. M., & Azon-Aguilar, C. (1999). Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Applied and Environmental Microbiology, 65, 718–723.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dumbrell, A. J., Nelson, M., Helgason, T., Dytham, C., Fitter, A. H., Nelson, H., Dytham, C., & Fitter, A. H. (2010). Relative roles of niche and neutral processes in structuring a soil microbial community. The ISME Journal, 4, 337–345.

    Article  PubMed  Google Scholar 

  • Dumbrell, A. J., Ashton, P. D., Aziz, N., Feng, G., Nelson, M., Dytham, C., Fitter, A. H., & Helgason, T. (2011). Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytologist, 190, 794–804.

    Article  CAS  PubMed  Google Scholar 

  • Dumbrell, A. J., Ferguson, R. M. W., & Clark, D. R. (2016). Microbial community analysis by single-amplicon high-throughput next generation sequencing: Data analysis – From raw output to ecology. In T. J. McGenity, K. N. Timmis, & B. Nogales (Eds.), Hydrocarbon and lipid microbiology protocols, Springer protocols handbooks. Heidelberg: Springer.

    Google Scholar 

  • Estrada, B., Beltran-Hermoso, M., Palenzuela, J., Iwase, K., Ruiz-Lozano, J. M., Barea, J. M., & Oehl, F. (2013). Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Asteriscus maritimus (L.) Less., a representative plant species in arid and saline Mediterranean ecosystems. Journal of Arid Environments, 97, 170–175.

    Article  Google Scholar 

  • European Environment Agency. (2007). State of the environment No 1/2007 Chapter 2. Office for official publications of the European communities.

    Google Scholar 

  • European Science Foundation. (2007). Annual report. Available at http://www.esf.org/fileadmin/Public_documents/Publications/AnnualReport2007.pdf

  • Fitter, A. H. (2005). Darkness visible: Reflections on underground ecology. Journal of Ecology, 93, 231–243.

    Article  Google Scholar 

  • Fitter, A. H., & Moyersoen, B. (1996). Evolutionary trends in root–microbe symbioses. Philosophical Transactions of the Royal Society B: Biological Sciences, 351, 1367–1375.

    Article  Google Scholar 

  • Francini, G., Männistö, M., Alaoja, V., & Kytöviita, M. M. (2014). Arbuscular mycorrhizal fungal community divergence within a common host plant in two different soils in a subarctic Aeolian sand area. Mycorrhiza, 24, 539–550.

    Article  PubMed  Google Scholar 

  • Gostinčar, C., Grube, M., de Hoog, S., Zalar, P., & Gunde-Cimerman, N. (2010). Extremotolerance in fungi: evolution on the edge. Mini review. FEMS Microbiology Ecology, 71, 2–11.

    Article  PubMed  Google Scholar 

  • Griffioen, W. A. J. (1994). Characterization of a heavy metal-tolerant endomycorrhizal fungus from the surroundings of a zinc refinery. Mycorrhiza, 4, 197–200.

    Article  CAS  Google Scholar 

  • Hanson, P. J., & Weltzin, J. F. (2000). Drought disturbance from climate change: Response of United States forests. Science of the Total Environment, 262, 205–220.

    Article  CAS  PubMed  Google Scholar 

  • Harikumar, V. S., Blaszkowski, J., Medhanie, G., Kanagaraj, M. K., & Samuel, V. D. (2015). Arbuscular mycorrhizal fungi colonizing the plant communities in Eritrea, Northeast Africa. Applied Ecology and Environmental Research, 13, 193–203.

    Google Scholar 

  • Hassan, S. E. D., Boon, E., St-Arnaud, M., & Hijri, M. (2011). Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils. Molecular Ecology, 20, 3469–3483.

    Article  Google Scholar 

  • Helgason, T., Daniell, T. J., Husband, R., Fitter, A. H., & Young, J. P. W. (1998). Ploughing up the wood-wide web? Nature, 394, 431.

    Article  CAS  PubMed  Google Scholar 

  • Helgason, T., Merryweather, J. W., Denison, J., Wilson, P., Young, J. P. W., & Fitter, A. H. (2002). Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. Journal of Ecology, 90, 371–384.

    Article  Google Scholar 

  • Helgason, T., Merryweather, J. W., Young, J. P. W., & Fitter, A. H. (2007). Specificity and resilience in the arbuscular mycorrhizal fungi of a natural woodland community. Journal of Ecology, 95, 623–630.

    Article  CAS  Google Scholar 

  • Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., et al. (2013). Global flood risk under climate change. Nature Climate Change, 3, 816–821.

    Article  Google Scholar 

  • Hohberg, K., Schulz, H. J., Balkenhol, B., Pilz, M., Thomalla, A., et al. (2015). Soil faunal communities from mofette fields: Effects of high geogenic carbon dioxide concentration. Soil Biology Biochemistry, 88, 420–429.

    Article  CAS  Google Scholar 

  • Jansa, J., Mozafar, A., Kuhn, G., Anken, T., Ruh, R., et al. (2003). Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecological Applications, 13, 1164–1176.

    Article  Google Scholar 

  • Kohout, P., Sýkorová, Z., Ctvrtlíková, M., Rydlová, J., Suda, J., et al. (2012). Surprising spectra of root-associated fungi in submerged aquatic plants. FEMS Microbiology Ecology, 80, 216–235.

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy, R., Kim, K., Kim, C., & Sa, T. (2014). Changes of arbuscular mycorrhizal traits and community structure with respect to soil salinity in a coastal reclamation land. Soil Biology Biochemistry, 72, 1–10.

    Article  CAS  Google Scholar 

  • Lekberg, Y., Meadow, J., Rohr, J. R., Redecker, D., & Zabinski, C. A. (2011). Importance of dispersal and thermal environment for mycorrhizal communities: Lessons from Yellowstone National Park. Ecology, 92, 1292–1302.

    Article  PubMed  Google Scholar 

  • Lemos, L. N., Fulthorpe, R. R., Triplett, E. W., & Roesch, L. F. W. (2011). Rethinking microbial diversity analysis in the high throughput sequencing era. Journal of Microbiological Methods, 86, 42–51.

    Article  CAS  PubMed  Google Scholar 

  • Leyval, C., Turnau, K., & Haselwandter, K. (1997). Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. Mycorrhiza, 7, 139–153.

    Article  CAS  Google Scholar 

  • Maček, I. (2013). A decade of research in mofette areas has given us new insights into adaptation of soil microorganisms to abiotic stress. Acta Agriculturae Slovenica, 101, 209–217.

    Google Scholar 

  • Maček, I. (2017). Arbuscular mycorrhizal fungi in hypoxic environments. In A. Varma et al. (Eds.), Mycorrhiza – Function, diversity, state of art. Cham: Springer. doi:10.1007/978-3-319-53064-2_16.

    Google Scholar 

  • Maček, I., Dumbrell, A. J., Nelson, M., Fitter, A. H., Vodnik, D., & Helgason, T. (2011). Local adaptation to soil hypoxia determines the structure of an arbuscular mycorrhizal fungal community in roots from natural CO2 springs. Applied and Environmental Microbiology, 77, 4770–4777.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maček, I., Kastelec, D., & Vodnik, D. (2012). Root colonization with arbuscular mycorrhizal fungi and glomalin-related soil protein (GRSP) concentration in hypoxic soils from natural CO2 springs. Agricultural and Food Science, 21, 62–71.

    Google Scholar 

  • Maček, I., Vodnik, D., Pfanz, H., Low-Décarie, E., Dumbrell, A.J. (2016a). Locally extreme environments as natural long-term experiments in ecology. In: A. J. Dumbrell, R. Kordas, & G. Woodward (Eds), Advances in ecological research, large scale ecology: Model systems to global perspectives (Vol. 55). Elsevier Ltd.

    Google Scholar 

  • Maček, I., Šibanc, N., Kavšček, M., & Leštan, D. (2016b). Diversity of arbuscular mycorrhizal fungi in metal polluted and EDTA washed garden soils before and after soil revitalization with commercial and indigenous fungal inoculum. Ecological Engineering, 95, 330–339.

    Article  Google Scholar 

  • Merryweather, J. W., & Fitter, A. H. (1998). The arbuscular mycorrhizal fungi of Hyacinthoides non-scripta I. Diversity of fungal taxa. New Phytologist, 138, 117–129.

    Article  Google Scholar 

  • Millar, N., & Bennett, A. E. (2016). Stressed out symbiotes: Hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi. Oecologia, doi:10.1007/s00442-016-3673-7.

    Google Scholar 

  • Moora, M., Öpik, M., Davison, J., Jairus, T., Vasar, M., et al. (2016). AM fungal communities inhabiting the roots of submerged aquatic plant Lobelia dortmanna are diverse and include a high proportion of novel taxa. Mycorrhiza, 26, 735–745.

    Article  CAS  PubMed  Google Scholar 

  • Oehl, F., & Körner, C. (2014). Multiple mycorrhization at the coldest place known for Angiosperm plant life. Alpine Botany, 124, 193–198.

    Article  Google Scholar 

  • Oehl, F., Sieverding, E., Palenzuela, J., Ineichen, K., & da Silva, G. A. (2011). Advances in Glomeromycota taxonomy and classification. IMA Fungus, 2, 191–199.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oehl, F., Palenzuela, J., Sanchez-Castro, I., Kuss, P., Sieverding, E., & da Silva, G. A. (2012). Acaulospora nivalis, a new fungus in the Glomeromycetes, characteristic for high alpine and nival altitudes of the Swiss Alps. Nova Hedwigia, 95, 105–122.

    Article  Google Scholar 

  • Öpik, M., & Davison, J. (2016). Uniting species – And community-oriented approaches to understand arbuscular mycorrhizal fungal diversity. Fungal Ecology. doi:10.1016/j.funeco.2016.07.005.

  • Öpik, M., Metsis, M., Daniell, T. J., Zobel, M., & Moora, M. (2009). Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytologist, 184, 424–437.

    Article  PubMed  Google Scholar 

  • Öpik, M., Zobel, M., Cantero, J. J., Davison, J., Facelli, J. M., et al. (2013). Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza, 23, 411–430.

    Article  PubMed  Google Scholar 

  • Öpik, M., Davison, J., Moora, M., & Zobel, M. (2014). DNA-based detection and identification of Glomeromycota: The virtual taxonomy of environmental sequences. The Botanical Review, 147, 135–147.

    Google Scholar 

  • Pawlowska, T. E., Blaszkowski, J., & Rühling, A. (1996). The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza, 6, 499–505.

    Article  Google Scholar 

  • Read, D. J. (1991). Mycorrhizas in ecosystems. Experientia, 47, 376–391.

    Article  Google Scholar 

  • Redecker, D., Kodner, R., & Graham, L. E. (2002). Palaeoglonius grayi from the Ordovician. Mycotaxon, 84, 33–37.

    Google Scholar 

  • Renker, C., Blanke, V., & Buscot, F. (2005). Diversity of arbuscular mycorrhizal fungi in grassland spontaneously developed on area polluted by a fertilizer plant. Environmental Pollution, 135, 255–266.

    Article  CAS  PubMed  Google Scholar 

  • Roesch, L. F. W., Fulthorpe, R. R., Riva, A., Casella, G., Hadwin, A. K. M., et al. (2007). Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME Journal, 1, 283–290.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosendahl, S. (2008). The first glance into the Glomus genome: An ancient asexual scandal with meiosis? New Phytologist, 193, 546–548.

    Article  Google Scholar 

  • Schloss, P. D. (2009). A high-throughput DNA sequence aligner for microbial ecology studies. PloS One, 4, e8230.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulz, H. J., & Potapov, M. B. (2010). A new species of Folsomia from mofette fields of the Northwest Czechia (Collembola, Isotomidae). Zootaxa, 2553, 60–64.

    Google Scholar 

  • Schüßler, A. (2008). Glomeromycota species list. Available at: http://schuessler.userweb.mwn.de/amphylo/

  • Schüßler, A., & Walker, C. (2010). The Glomeromycota: A species list with new families and new genera. The Royal Botanic Garden Edinburgh (UK), The Royal Botanic Garden, Kew (UK), Botanische Staatssammlung Munich (DE), and Oregon State University, Gloucester (USA). Available online at http://www.amf-phylogeny.com

  • Šibanc, N., Dumbrell, A. J., Mandić-Mulec, I., & Maček, I. (2014). Impacts of naturally elevated soil CO2 concentrations on communities of soil archaea and bacteria. Soil Biology Biochemistry, 68, 348–356.

    Article  Google Scholar 

  • Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis (3rd ed.787 pp). Academic: London.

    Google Scholar 

  • Smolders, A. J. P., Lucassen, E., & Roelofs, J. G. M. (2002). The isoetid environment: biogeochemistry and threats. Aquatic Botany, 73, 325–350.

    Article  CAS  Google Scholar 

  • Sonjak, S., Beguiristain, T., Leyval, C., & Regvar, M. (2009). Temporal temperature gradient gel electrophoresis (TTGE) analysis of arbuscular mycorrhizal fungi associated with selected plants from saline and metal polluted environments. Plant and Soil, 314, 25–34.

    Article  CAS  Google Scholar 

  • Sudová, R., Sýkorová, Z., Rydlová, J., Čtvrtlíková, M., & Oehl, F. (2015). Rhizoglomus melanum, a new arbuscular mycorrhizal fungal species associated with submerged plants in freshwater lake Avsjøen in Norway. Mycological Progress, 14, 1–9.

    Article  Google Scholar 

  • Symanczik, S., Blaszkowski, J., Koegel, S., Boller, T., Wiemken, A., & Al-Yahya’ei, M. (2014a). Isolation and identification of desert habituated arbuscular mycorrhizal fungi newly reported from the Arabian Peninsula. Journal of Arid Land, 6, 488–497.

    Article  Google Scholar 

  • Symanczik, S., Blaszkowski, J., Chwat, G., Boller, T., Wiemken, A., & Al-Yahya’ei, M. N. (2014b). Three new species of arbuscular mycorrhizal fungi discovered at one location in a desert of Oman: Diversispara omaniana, Septoglomus nakheelum and Rhizophagus arabicus. Mycologia, 106, 243–259.

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo, L., Pärtel, K., Jairus, T., Gates, G., Põldmaa, K., & Tamm, H. (2009). Ascomycetes associated with ectomycorrhizas: molecular diversity and ecology with particular reference to the Helotiales. Environmental Microbiology, 11, 3166–3178.

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo, L., Bahram, M., Ryberg, M., Otsing, E., Kõljalg, U., & Abarenkov, K. (2014). Global biogeography of the ectomycorrhizal/sebacina lineage (Fungi, Sebacinales) as revealed from comparative phylogenetic analyses. Molecular Ecology, 23, 4168–4183.

    Article  PubMed  Google Scholar 

  • Toju, H., Tanabe, A. S., & Ishii, H. S. (2016). Ericaceous plant-fungus network in a harsh alpine-subalpine environment. Molecular Ecology, 25, 3242–3257.

    Article  CAS  PubMed  Google Scholar 

  • Vallino, M., Massa, N., Lumini, E., Bianciotto, V., Berta, G., & Bonfante, P. (2006). Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in Northern Italy. Environmental Microbiology, 8, 971–983.

    Article  PubMed  Google Scholar 

  • van der Heijden, M. G. A., Martin, F. M., Selosse, M., & Sanders, I. R. (2015). Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytologist, 205, 1406–1423.

    Article  PubMed  Google Scholar 

  • Varga, S., Finozzi, C., Vestberg, M., & Kytöviita, M. (2015). Arctic arbuscular mycorrhizal spore community and viability after storage in cold conditions. Mycorrhiza, 25, 335–343.

    Article  CAS  PubMed  Google Scholar 

  • Vodnik, D., Kastelec, D., Pfanz, H., Maček, I., & Turk, B. (2006). Small-scale spatial variation in soil CO2 concentration in a natural carbon dioxide spring and some related plant responses. Geoderma, 133, 309–319.

    Article  CAS  Google Scholar 

  • Vodnik, D., Videmšek, U., Pintar, M., Maček, I., & Pfanz, H. (2009). The characteristics of soil CO2 fluxes at a site with natural CO2 enrichment. Geoderma, 150, 32–37.

    Article  CAS  Google Scholar 

  • Walker, C., & Trappe, J. M. (1993). Names and epithets in the Glomales and Endogonales. Mycological Research, 97, 339–344.

    Article  Google Scholar 

  • Whitfield, L., Richards, A. J., & Rimmer, D. L. (2004). Relationships between soil heavy metal concentration and mycorrhizal colonization in Thymus polytrichus in northern England. Mycorrhiza, 14, 55–62.

    Article  CAS  PubMed  Google Scholar 

  • Wigand, C., Andersen, F. O., Christensen, K. K., Holmer, M., & Jensen, H. S. (1998). Endomycorrhizae of isoetids along a biogeochemical gradient. Limnology and Oceanography, 43, 508–515.

    Article  CAS  Google Scholar 

  • Wilde, P., Manal, A., Stodden, M., Sieverding, E., Hildebrandt, U., & Bothe, H. (2009). Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environmental Microbiology, 11, 1548–1561.

    Article  PubMed  Google Scholar 

  • Yamato, M., Ikeda, S., & Iwase, K. (2008). Community of arbuscular mycorrhizal fungi in a coastal vegetation on Okinawa island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza, 18, 241–249.

    Article  PubMed  Google Scholar 

  • Yamato, M., Yagame, T., Yoshimura, Y., & Iwase, K. (2012). Effect of environmental gradient in coastal vegetation on communities of arbuscular mycorrhizal fungi associated with Ixeris repens (Asteraceae). Mycorrhiza, 22, 623–630.

    Article  PubMed  Google Scholar 

  • Zarei, M., König, S., Hempel, S., Nekouei, M. K., Savaghebi, G., & Buscot, F. (2008). Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region. Environmental Pollution, 156, 1277–1283.

    Article  CAS  PubMed  Google Scholar 

  • Zarei, M., Hempel, S., Wubet, T., Schäfer, T., Savaghebi, G., et al. (2010). Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environmental Pollution, 158, 2757–2765.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work supported by the Slovenian Research Agency (ARRS), projects J4-5526 and J4-7052, ARRS programme P4-0085, and Swiss National Science Foundation project SCOPES (Scientific Co-operation between Eastern Europe and Switzerland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Maček .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Maček, I. (2017). Arbuscular Mycorrhizal Fungal Communities Pushed Over the Edge – Lessons from Extreme Ecosystems. In: Lukac, M., Grenni, P., Gamboni, M. (eds) Soil Biological Communities and Ecosystem Resilience. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-63336-7_10

Download citation

Publish with us

Policies and ethics