Skip to main content

A Survey on Ordinal Notations Around the Bachmann–Howard Ordinal

  • Chapter
  • First Online:
Feferman on Foundations

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 13))

Abstract

Various ordinal functions which in the past have been used to describe ordinals not much larger than the Bachmann–Howard ordinal are set into relation. Special efforts are made to reveal the intrinsic connections between Feferman’s \(\theta \)-functions and the Bachmann hierarchy.

This is a revised and slightly extended version of [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Actually Aczel’s Theorem 3 looks somewhat different, but it implies the above formulated result. A proof of Theorem 3 can be extracted from the proof of Theorem 3.5 in [4].

  2. 2.

    \(\overline{\varphi }A\) is the ‘fixed-point-free version’ of \(\varphi A\) defined in [24, Sect. 3].

  3. 3.

    This definition is closely related to clause 5 in Definition 3.6 of [23] But be aware that there \(\overline{\delta }\) has a different meaning.

References

  1. Aczel, P.: A New Approach to the Bachmann Method for Describing Large Countable Ordinals (Preliminary Summary). unpublished

    Google Scholar 

  2. Aczel, P.: Describing ordinals using functionals of transfinite type. J. Symbol. Logic 37(1), 35–47 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bachmann, H.: Die Normalfunktionen und das Problem der ausgezeichneten Folgen von Ordnungszahlen. Vierteljschr. Naturforsch.Ges. Zürich, pp. 115–147 (1950)

    Google Scholar 

  4. Bridge, J.: A simplification of the Bachmann method for generating large countable ordinals. J. Symbol. Logic 40, 171–185 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buchholtz, U.T.: Unfolding of systems of inductive definitions. PhD thesis, Stanford University (2013)

    Google Scholar 

  6. Buchholz, W.: Normalfunktionen und konstruktive Systeme von Ordinalzahlen. In Diller, J., Müller, G.H. (eds.), Proof Theory Symposium, Kiel 1974. Lecture Notes in Mathematics, vol. 500, pp. 4–25. Springer, Berlin (1975)

    Google Scholar 

  7. Buchholz, W.: Collapsingfunktionen (1981). http://www.mathematik.uni-muenchen.de/~buchholz/Collapsing.pdf

  8. Buchholz, W.: A survey on ordinal notations around the Bachmann-Howard ordinal. In: Kahle, R., Strahm, T., Studer, T. (eds.) Advances in Proof Theory. Progress in Computer Science and Applied Logic, vol. 28, pp. 1–29. Birkhäuser, Basel (2016)

    Google Scholar 

  9. Buchholz, W., Schütte, K.: Die Beziehungen zwischen den Ordinalzahlsystemen \(\Sigma \) und \(\overline{\theta }(\omega )\). Arch. Math. Logik und Grundl. 17, 179–189 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buchholz, W., Schütte, K.: Ein Ordinalzahlensystem für die beweistheoretische Abgrenzung der \(\Pi ^1_1\)-Separation und Bar-Induktion. Bayr. Akad. Wiss. Math.-Naturw. Kl., pp. 99–13 (1983)

    Google Scholar 

  11. Buchholz, W., Schütte, K.: Proof Theory of Impredicative Subsystems of Analysis. Studies in Proof Theory Monographs, vol. 2. Bibliopolis, Napoli (1988)

    Google Scholar 

  12. Crossley, J.N., Bridge-Kister, J.: Natural well-orderings. Arch. Math. Logik und Grundl. 26, 57–76 (1986/87)

    Google Scholar 

  13. Feferman, S.: Proof theory: a personal report. In: Takeuti, G. (ed.) Proof Theory. Studies in Logic and the Foundations of Mathematics, 2nd edn. pp. 447–485. North-Holland (1987)

    Google Scholar 

  14. Gerber, H.: An extension of Schütte’s Klammersymbols. Math. Ann. 174, 203–216 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  15. Howard, W.: A system of abstract constructive ordinals. J. Symbol. Logic 37, 355–374 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  16. Isles, D.: Regular ordinals and normal forms. In: Kino, A., Myhill, J., Vesley, R.E. (eds.), Intuitionism and Proof Theory (Proceedings Conference, Buffalo N.Y., 1968), pp. 339–362. North-Holland, 1970

    Google Scholar 

  17. Jäger, G.: \(\rho \)-inaccessible ordinals, collapsing functions and a recursive notation system. Archiv für mathematische Logik 24, 49–62 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pfeiffer, H.: Ausgezeichnete Folgen für gewisse Abschnitte der zweiten und weiterer Zahlenklassen. PhD thesis, Hannover (1964)

    Google Scholar 

  19. Pohlers, W.: Ordinal notations based on a hierarchy of inaccessible cardinals. Ann. Pure Appl. Logic 33, 157–179 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rathjen, M.: Ordinal notations based on a weakly Mahlo cardinal. Arch. Math. Logic 29, 249–263 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rathjen, M.: Proof theory of reflection. Ann. Pure Appl. Logic 68, 181–224 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rathjen, M.: Recent advances in ordinal analysis: \({\Pi }^1_2\)-CA and related systems. Bull. Symbol. Logic 1(4), 468–485 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rathjen, M., Weiermann, A.: Proof-theoretic investigations on Kruskal’s theorem. Ann. Pure Appl. Logic 60(1), 49–88 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schütte, K.: Kennzeichnung von Ordnungszahlen durch rekursiv erklärte Funktionen. Math. Ann. 127, 15–32 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schütte, K.: Proof Theory, Grundlehren der Mathematischen Wissenschaften, vol. 225. Springer, Berlin (1977)

    Google Scholar 

  26. Schütte, K.: Beziehungen des Ordinalzahlensystems \({{\rm OT}}(\vartheta )\) zur Veblen-Hierarchie. unpublished (1992)

    Google Scholar 

  27. Veblen, O.: Continous increasing functions of finite and transfinite ordinals. Trans. Am. Math. Soc. 9, 280–292 (1908)

    Article  MATH  Google Scholar 

  28. Weyhrauch, R.: Relations between some hierarchies of ordinal functions and functionals. PhD thesis, Stanford University (1976). (Completed and circulated in 1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Buchholz .

Editor information

Editors and Affiliations

Appendix

Appendix

This appendix is devoted to the proof of Lemmata 2.1, 2.2d.

Lemma A.1

  1. (a)

    \(\lambda \in Lim\;\Rightarrow \;0<\lambda [0]\).

  2. (b)

    \( \gamma +\Omega ^\beta<\Omega ^\alpha \; \& \;\eta<\Omega \;\Rightarrow \;\gamma +\Omega ^\beta \eta <\Omega ^\alpha \).

  3. (c)

    \( \lambda =_\mathrm{NF}\gamma +\Omega ^\beta \eta \not \in \mathrm{ran}(F_0)\; \& \;\Omega ^\alpha <\lambda \;\Rightarrow \;\Omega ^\alpha \le \lambda [0]\).

Proof of (c): From \(\Omega ^\alpha <\lambda =\gamma +\Omega ^\beta \eta \) by (b) we get \(\Omega ^\alpha \le \gamma +\Omega ^\beta \). If \(\eta \in Lim\) then \(\lambda [0]=\gamma +\Omega ^\beta \). If \(1<\eta =\eta _0{+}1\) then \(\gamma +\Omega ^\beta \le \gamma +\Omega ^\beta \eta _0\le \lambda [0]\). If \(\eta =1\) then \(0<\gamma \) (since \(\lambda \not \in \mathrm{ran}(F_0)\)) and therefore \(\Omega ^{\beta +1}\le \gamma \) which together with \(\Omega ^\alpha <\lambda =\gamma +\Omega ^\beta \) yields \(\Omega ^\alpha \le \gamma \le \lambda [0]\).

Lemma A.2

\( \lambda =_\mathrm{NF}F_\alpha (\beta )\; \& \;0<\beta \;\Rightarrow \;F_\alpha (\beta [n])\le \lambda [n]\).

Proof

1. \(\beta \in Lim\): \(F_\alpha (\beta [n])=\lambda [n]\).

2. \(\beta =\beta _0{+}1\):

2.1. \(\alpha =0\): \(F_\alpha (\beta [n])=\Omega ^{\beta _0}\le \Omega ^{\beta _0}{\cdot }(1{+}n)=\lambda [n]\).

2.2. \(\alpha >0\): \(F_\alpha (\beta [n])=F_\alpha (\beta _0)<\lambda ^-\le \lambda [n]\).

Lemma A.3

\(F_\zeta (\mu )<\lambda \le F_\zeta (\mu {+}1)\;\Rightarrow \;F_\zeta (\mu )\le \lambda [0]\).

Proof

0. \(\lambda =F_\zeta (\mu +1)\):

0.1. \(\zeta =0\): \(\lambda =\Omega ^{\mu +1}\), \(\lambda [\xi ]=\Omega ^\mu (1{+}\xi )\), \(\lambda [0]=F_0(\mu )\).

0.2. \(\zeta >0\): \(F_\zeta (\mu )<\lambda ^-<F_{\zeta [0]}(\lambda ^-)=\lambda [0]\).

1. \(\lambda <F_\zeta (\mu +1)\):

1.1. \(\lambda =_\mathrm{NF}\gamma +\Omega ^\beta \eta \not \in \mathrm{ran}(F_0)\):

\( F_\zeta (\mu )\in \mathrm{ran}(F_0)\; \& \;F_\zeta (\mu )<\lambda \;\buildrel \mathrm{L.A1{c}}\over \Rightarrow \; F_\zeta (\mu )\le \lambda [0]\).

1.2. \(\lambda =_\mathrm{NF}F_\alpha (\beta )\): Then \(\alpha <\zeta \) and thus \(F_\alpha (F_\zeta (\mu ))=F_\zeta (\mu )<F_\alpha (\beta )\). Hence \(F_\zeta (\mu )<\beta \) and therefore \(F_\zeta (\mu )\buildrel \mathrm{IH}\over \le \beta [0]\le F_\alpha (\beta [0]) \buildrel \mathrm{A2}\over \le \lambda [0]\).

Definition. \(r(\gamma ):=\left\{ \begin{array}{ll} -1 &{}\hbox {if}\ \gamma \not \in \mathrm{ran}(F_0)\\ \alpha &{}\hbox {if} \ \gamma =_\mathrm{NF}F_\alpha (\beta )\\ \gamma &{}\hbox {if} \ \gamma =\Lambda \end{array}\right. \)

Lemma A.4

  1. (a)

    \(r(F_\alpha (\beta ))=\max \{\alpha ,r(\beta )\}\).

  2. (b)

    \(\lambda [0]<\delta <\lambda \;\Rightarrow \;r(\delta )\le r(\lambda )\).

  3. (c)

    \( \lambda =_\mathrm{NF}F_\alpha (\beta )\; \& \;\beta \not \in Lim\; \& \;\lambda ^-<\eta <\lambda \;\Rightarrow \;\lambda ^-\le \eta [1]\).

Proof

(a) 1. \(\beta <F_\alpha (\beta )\):

Then \(r(F_\alpha (\beta ))=\alpha \) and (\(r(\beta )=-1\) or \(\beta =_\mathrm{NF}F_{\beta _0}(\beta _1)\) with \(\beta _0\le \alpha \)).

2. \(\beta =F_\alpha (\beta )\): Then \(\beta =_\mathrm{NF}F_{\beta _0}(\beta _1)\) with \(\alpha <\beta _0=r(\beta )=r(F_\alpha (\beta ))\).

(b) 1. \(\lambda =_\mathrm{NF}\gamma +\Omega ^\beta \eta \not \in \mathrm{ran}(F_0)\):

1.1. \(\eta \in Lim\): \(\gamma +\Omega ^\beta =\lambda [0]<\delta <\gamma +\Omega ^\beta \eta \; \buildrel \mathrm{A1{b}}\over \Rightarrow \;\delta \not \in \mathrm{ran}(F_0)\).

1.2. \(\eta =\eta _0{+}1\):

\( \gamma +\Omega ^\beta \eta _0<\lambda [0]<\delta <\gamma +\Omega ^\beta (\eta _0{+}1)\not \in \mathrm{ran}(F_0) \; \& \;\Omega ^{\beta +1}|\gamma \;\Rightarrow \;\delta \not \in \mathrm{ran}(F_0)\).

2. \(\lambda =_\mathrm{NF}F_\alpha (\beta )\): If \(\lambda <F_{\alpha +1}(0)\) then also \(\delta <F_{\alpha +1}(0)\) and thus \(r(\delta )\le \alpha =r(\lambda )\). Otherwise there exists \(\mu \) such that \(F_{\alpha {+}1}(\mu )<\lambda <F_{\alpha +1}(\mu {+}1)\). Then by Lemma A3 we get \(F_{\alpha {+}1}(\mu )\le \lambda [0]<\delta <F_{\alpha +1}(\mu {+}1)\) and thus \(\delta \not \in \mathrm{ran}(F_{\alpha +1})\), i.e. \(r(\delta )\le \alpha =r(\lambda )\).

3. \(\lambda =\Lambda \): \(r(\delta )<\Lambda =r(\Lambda )\).

(c) For \(\beta =0\vee \eta =\eta _0{+}1\) the claim is trivial. Assume now \( \beta =\beta _0{+}1\; \& \;\eta \in Lim\).

\(F_\alpha (\beta _0)<\eta <F_\alpha (\beta _0{+}1)\;\buildrel \mathrm{L.A3}\over \Rightarrow \; \lambda ^-=F_\alpha (\beta _0){+}1\le \eta [0]+1\le \eta [1]\).

Lemma 2.1

\( \lambda =_\mathrm{NF}F_\alpha (\beta )\; \& \;\beta \in Lim\; \& \;1\le \xi <\tau _{\beta }\;\Rightarrow \;\lambda [\xi ]=_\mathrm{NF}F_\alpha (\beta [\xi ])\).

Proof

We have \( \lambda [\xi ]=F_\alpha (\beta [\xi ])\; \& \;\beta [0]<\beta [\xi ]<\beta \). By Lemma A4b this yields \( \lambda [\xi ]=F_\alpha (\beta [\xi ])\; \& \;r(\beta [\xi ])\le r(\beta )\le \alpha \), whence \(\lambda [\xi ]=_\mathrm{NF}F_\alpha (\beta [\xi ])\).

Lemma 2.2d

\( \xi {+}1<\tau _{\lambda }\; \& \;\lambda [\xi ]<\delta \le \lambda [\xi {+}1]\;\Rightarrow \;\lambda [\xi ]\le \delta [1]\).

Proof by induction on \(\delta \#\lambda \): If \(r(\delta )<r(\lambda [\xi ])\) then, by Lemma A4b, \(\lambda [\xi ]\le \delta [0]\).

Assume now that \(r(\lambda [\xi ])\le r(\delta )\) (\(\dagger \)).

1. \(\lambda =_\mathrm{NF}\gamma +\Omega ^\beta \eta \not \in \mathrm{ran}(F_0)\).

1.1. \(\eta \in Lim\):

\(\gamma +\Omega ^\beta (1{+}\xi )=\lambda [\xi ]<\delta <\lambda [\xi {+}1]= \gamma +\Omega ^\beta (1{+}\xi )+\Omega ^\beta \;\Rightarrow \;\lambda [\xi ]\le \delta [0]\).

1.2. \(\eta =\eta _0{+}1\): \(\gamma +\Omega ^\beta \eta _0+\Omega ^\beta [\xi ]=\lambda [\xi ]<\delta \le \lambda [\xi {+}1]=\gamma +\Omega ^\beta \eta _0+\Omega ^\beta [\xi {+}1]\;\Rightarrow \delta =(\gamma +\Omega ^\beta \eta _0)+\delta _0\) with \(\Omega ^\beta [\xi ]<\delta _0\le \Omega ^\beta [\xi {+}1]\;\Rightarrow \delta [0] =\gamma +\Omega ^\beta \eta _0+\delta _0[0]\) with \(\Omega ^\beta [\xi ]\buildrel \mathrm{IH}\over \le \delta _0[0]\;\Rightarrow \; \lambda [\xi ]\le \delta [0]\).

2. \( \lambda =_\mathrm{NF}F_\alpha (\beta )\; \& \;\beta \in Lim\): Then (1) \(\lambda [\xi ]=F_\alpha (\beta [\xi ])\), and (2) \(\lambda [\xi ]<\delta <\lambda \).

From \(\alpha \buildrel \mathrm{(1)}\over \le r(\lambda [\xi ])\buildrel \mathrm{(\dagger )}\over \le r(\delta )\buildrel \mathrm{(2),L.A4{b}}\over \le r(\lambda )=\alpha \) we get \(r(\delta )=\alpha \), i.e. \(\delta =_\mathrm{NF}F_\alpha (\eta )\) for some \(\eta \). Now from \(\lambda [\xi ]<\delta \le \lambda [\xi {+}1]\) we conclude \(\beta [\xi ]<\eta \le \beta [\xi {+}1]\) and then, by IH, \(\beta [\xi ]\le \eta [0]\). Hence \(\lambda [\xi ]\le F_\alpha (\eta [0])\buildrel \mathrm{L.A2}\over \le \delta [0]\).

3. \( \lambda =_\mathrm{NF}F_\alpha (\beta )\; \& \;\beta \not \in Lim\):

3.1. \(\alpha =0\): Then \(\beta =\beta _0{+}1\), and \(\lambda [\xi ]=\Omega ^{\beta _0}(1{+}\xi )<\delta \le \Omega ^{\beta _0}(1{+}\xi )+\Omega ^{\beta _0}\) implies \(\lambda [\xi ]\le \delta [0]\).

3.2. \(\alpha =\alpha _0{+}1\): Then \(\lambda [\xi ]=F_{\alpha _0}^{\xi +1}(\lambda ^-)\).

Hence, by \((\dagger )\), \(\delta =_\mathrm{NF}F_\zeta (\eta )\) with \(\alpha _0\le \zeta \).

3.2.1. \(\alpha _0<\zeta \): \(\lambda ^-<F_\zeta (\eta )\;\Rightarrow \;\lambda [\xi {+}1]=F^{\xi +2}_{\alpha _0}(\lambda ^-)<F_\zeta (\eta )\). Contradiction.

3.2.2. \(\zeta =\alpha _0\): Then from \(F_{\alpha _0}^{\xi +1}(\lambda ^-)=\lambda [\xi ]<\delta =F_{\alpha _0}(\eta )\le \lambda [\xi {+}1]\) we conclude \(F_{\alpha _0}^\xi (\lambda ^-)<\eta \le \lambda [\xi ]\). As we will show, this implies \(F_{\alpha _0}^\xi (\lambda ^-)\le \eta [1]\), thence \(F_{\alpha _0}^{\xi +1}(\lambda ^-)\le F_\zeta (\eta [1])\buildrel \mathrm{L.A2}\over \le \delta [1]\).

Proof of \(F_{\alpha _0}^\xi (\lambda ^-)\le \eta [1]\):

(i) \(\xi =n{+}1\): Then the claim follows by IH from \(\lambda [n]=F^\xi _{\alpha _0}(\lambda ^-)<\eta \le \lambda [n{+}1]\).

(ii) \(\xi =0\): \(\lambda ^-<\eta <\lambda \;\buildrel \mathrm{L.A4{c}}\over \Rightarrow \;\lambda ^-\le \eta [1]\).

3.3. \(\alpha \in Lim\): \(\lambda [\xi ]=F_{\alpha [\xi ]}(\lambda ^-)\), and by \((\dagger )\) we have \(\delta =_\mathrm{NF}F_\zeta (\eta )\) with \(\alpha [\xi ]\le \zeta \).

3.3.1. \(\alpha [\xi {+}1]<\zeta \): \(\lambda ^-<F_\zeta (\eta )\;\Rightarrow \;F_{\alpha [\xi +1]}(\lambda ^-)<F_\zeta (\eta )=\delta \). Contradiction.

3.3.2. \(\alpha [\xi ]<\zeta \le \alpha [\xi {+}1]\):

(i) \(\eta \in Lim\): Then \(\lambda ^-<\delta [1]=F_\zeta (\eta [1])\) (for \(\beta =0\), \(\lambda ^-=0\). If \(\beta =\beta _0{+}1\), then \(F_\alpha (\beta _0)<\delta <F_\alpha (\beta _0{+}1)\) and thus, by Lemma A3, \(F_\alpha (\beta _0)\le \delta [0]\)).

\( \alpha [\xi ]<\zeta \; \& \;\lambda ^-<\delta [1]\;\Rightarrow \;\lambda [\xi ]=F_{\alpha [\xi ]}(\lambda ^-)<\delta [1]\).

(ii) \(\eta \not \in Lim\): By IH \(\alpha [\xi ]\le \zeta [1]\). Further \(\lambda ^-\le \delta ^-\).

figure g

From \(\alpha [\xi ]\le \zeta [1]\) and \(\lambda ^-\le \delta ^-\) we conclude \(\lambda [\xi ]=F_{\alpha [\xi ]}(\lambda ^-)\le F_{\zeta [1]}(\delta ^-)\le \delta [1]\).

3.3.3. \(\zeta =\alpha [\xi ]\): This case is similar to 3.2.2(ii):

\(\lambda [\xi ]=F_\zeta (\lambda ^-)<F_\zeta (\eta )<F_\alpha (\beta )\;\Rightarrow \;\lambda ^-<\eta <F_\alpha (\beta )\;\Rightarrow \lambda [\xi ]=F_\zeta (\lambda ^-)\buildrel \mathrm{L.A4{c}}\over \le F_\zeta (\eta [1]) \buildrel \mathrm{L.A2}\over \le \delta [1]\).

4. \(\lambda =\Lambda \): This case is very similar to 3.3, but considerably simpler.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buchholz, W. (2017). A Survey on Ordinal Notations Around the Bachmann–Howard Ordinal. In: Jäger, G., Sieg, W. (eds) Feferman on Foundations. Outstanding Contributions to Logic, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-63334-3_4

Download citation

Publish with us

Policies and ethics