Feferman on Computability

  • Jeffery Zucker
Part of the Outstanding Contributions to Logic book series (OCTR, volume 13)


Solomon Feferman has left his mark on computability theory, as on many other areas of foundational studies. The purpose of this paper is, by means of reviewing a selected few of his many papers in this area, to give an idea of his impressive insights and developments in this field.


Feferman Generalized computability Abstract data types Computing on streams Computing on reals 

AMS 2010 Classification

01-02 03-02 03-03 03D65 03D70 03D75 03D78 


  1. 1.
    Bishop, E., Bridges, D.: Constructive Analysis. Springer (1985)Google Scholar
  2. 2.
    Braverman, M., Cook, S.: Computing over the reals: foundations for scientific computation. Not. Am. Math. Soc. 51, 318–329 (2006)zbMATHGoogle Scholar
  3. 3.
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer (1998)Google Scholar
  4. 4.
    Beeson, M.: Foundations of Constructive Mathematics. Springer (1985)Google Scholar
  5. 5.
    Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill (1967)Google Scholar
  6. 6.
    Blum, L.: Computability over the reals: where turing meets Newton. Not. Am. Math. Soc. 51, 1024–1034 (2004)zbMATHGoogle Scholar
  7. 7.
    Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bull. Am. Math. Soc. 21, 1–46 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bergstra, J.A., Tucker, J.V.: Initial and final algebra semantics for data type specifications: two characterization theorems. SIAM J. Comput. 12, 366–387 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. II. Interscience (1953). Translated and revised from the German edition (1937)Google Scholar
  10. 10.
    Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition. Springer (1998)Google Scholar
  11. 11.
    Ershov, Y.L.: Computable functions of finite types. Algebra and Logic, 11, 203–242 (1972). Translated from Algebra i Logika, 11, 367–437 (1972)Google Scholar
  12. 12.
    Ershov, Y.L.: Maximal and everywhere-defined funtionals. Algebra and Logic, 13, 210–225 (1974). Translated from Algebra i Logika, 13, 374–397 (1974)Google Scholar
  13. 13.
    Feferman, S.: A language and axioms for explicit mathematics. In: Crossley, J.N. (ed.) Algebra and Logic: Papers from the 1974 Summer Research Institute of the Australasian Mathematical Society, vol. 450. Lecture Notes in Mathematics, pp. 87–139. Springer (1975)Google Scholar
  14. 14.
    Feferman, S.: Generating schemes for partial recursively continuous functionals (Summary). In: Colloque International de Logique, Clermont-Ferrand, 1975, vol. 249. Colloq. Int. du Centre National de la Recherche Scientifique, Paris, pp. 191–198 (1977)Google Scholar
  15. 15.
    Feferman, S.: Inductive schemata and recursively continuous functionals. In: Gandy, R.O., Hyland, J.M.E. (eds.) Logic Colloquium 76: Proceedings of a Conference held in Oxford in July 1976, pp. 191–198. North Holland (1977)Google Scholar
  16. 16.
    Feferman, S.: Constructive theories of functions and classes. In: Boffa, M., van Dalen, D., McAloon, K. (eds.) Logic Colloquium ’78: Proceedings of a Colloquium held in Mons, August 1978, pp. 159–224. North Holland (1979)Google Scholar
  17. 17.
    Feferman, S.: A new approach to abstract data types, I: informal development. Math. Struct. Comput. Sci. 2, 193–229 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Feferman, S.: A new approach to abstract data types, II: computability on adts as ordinary computation. In: Börger, E. et al. (ed.) Computer Science Logic: Proceedings 5th Workshop, Berne, Switzerland, October 1991, vol. 626. Lecture Notes in Computer Science, pp. 79–95. Springer (1992)Google Scholar
  19. 19.
    Feferman, S.: Computation on abstract data types: the extensional approach, with an application to streams. Ann. Pure Appl. Log. 81, 75–113 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Feferman, S.: About and around computing over the reals. In: Copeland, B.J., Posy, C.J., Shagrir, O. (eds.) Computability: Turing, Gödel, Church, and Beyond, pp. 55–76. MIT Press (2013)Google Scholar
  21. 21.
    Feferman, S.: Theses for computation and recursion on abstract structure. In: Sommaruga, G., Strahm, T. (eds.) Turing’s Revolution: The Impact of his Ideas about Computability. Birkhäuser/Springer, Basel (2015)Google Scholar
  22. 22.
    Fenstad, J.E.: On axiomatizing recursion theory. In: Fenstad, J.E., Hinman, P.G. (eds.) Generalized Recursion Theory: Proceedings 1972 Oslo Symposium, pp. 385–404. North Holland (1974)Google Scholar
  23. 23.
    Friedman, H., Mansfield, R.: Algebraic procedures. Trans. Am. Math. Soc. 332, 297–312 (1992)CrossRefzbMATHGoogle Scholar
  24. 24.
    Friedman, H.: Algebraic procedures, generalized Turing algorithms, and elementary recursion theory. In: Gandy, R.O., Yates, C.M.E. (eds.) Logic Colloquium ’69, pp. 361–389. North Holland (1971)Google Scholar
  25. 25.
    Grzegorczyk, A.: Computable functions. Fundamenta Mathematicae 42, 168–202 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Grzegorczyk, A.: On the defintions of computable real continuous functions. Fundamenta Mathematicae 44, 61–71 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.B.: Initial algebra semantics and continuous algebras. J. Assoc. Comput. Mach. 24, 68–95 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Dover (1952). Translated from the French edition (1922)Google Scholar
  29. 29.
    Hadamard, J.: La Théorie des Équations aux Dérivées Partielles. Éditions Scientifiques (1964)Google Scholar
  30. 30.
    Hyland, J.M.E.: Recursion Theory on the Conntable Functionals. D.Phil. thesis, Oxford University (1975)Google Scholar
  31. 31.
    Kleene, S.C.: Introduction to Metamathematics. North Holland (1952)Google Scholar
  32. 32.
    Kleene, S.C.: Countable functionals. In: Heyting, A. (ed.) Constructivity in Mathematics: Proceedings of the Colloquium held at Amsterdam, 1957, pp. 81–100. North Holland (1959)Google Scholar
  33. 33.
    Kleene, S.C.: Recursive functionals and quantifiers of finite types i. Trans. Am. Math. Soc. 91, 1–52 (1959)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Kechris, A.S., Moschovakis, Y.N.: Recursion in higher types. In: Barwise, J. (ed.) Handbook of Mathematical Logic, pp. 681–737. North Holland (1977)Google Scholar
  35. 35.
    Kreisel, G.: Interpretation of analysis by means of constructive functionals of finite type. In: Heyting, A. (ed.) Constructivity in Mathematics: Proceedings of the Colloquium held at Amsterdam, 1957, pp. 101–128. North Holland (1959)Google Scholar
  36. 36.
    Lacombe, D.: Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables réelles, I, II, III. C.R. Acad. Sci. Paris (1955), 240, 2470–2480, 241, 13–14, 151–153Google Scholar
  37. 37.
    Moschovakis, Y.N.: Abstract first order computability I. Trans. Am. Math. Soc. 138, 427–464 (1969)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Moschovakis, Y.N.: Axioms for computation theories — first draft. In: Gandy, R.O., Yates, C.E.M. (eds.) Logic Colloquium ’69: Proceedings Summer School Colloquium in Mathematical Logic, Manchester, August 1969, pp. 199–255. North Holland (1971)Google Scholar
  39. 39.
    Moschovakis, Y.N.: Elementary Induction on Abstract Structures. North Holland (1974)Google Scholar
  40. 40.
    Moschovakis, Y.N.: On the basic notions in the theory of induction. In: Proceedings of the 5th International Congress in Logic, Methodology and Philosophy of Science, London, Ontario, 1975, pp. 207–236 (1976)Google Scholar
  41. 41.
    Moschovakis, Y.N.: Abstract recursion as a foundation for the theory of recursive algorithms. In: Richter, M.M. et al. (ed.) Computation and Proof Theory: Proceedings Logic Colloquium Aachen 1983, Part II, vol. 1104. Lecture Notes in Mathematics, pp. 289–364. Springer (1984)Google Scholar
  42. 42.
    Moschovakis, Y.N.: The formal language of recursion. J. Symb. Log. 54, 1216–1252 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Mitchell, J.C., Plotkin, G.D.: Abstract types have extensional type. ACM Trans. Progr. Lang. Syst. 10, 470–502 (1985)CrossRefGoogle Scholar
  44. 44.
    Myhill, J., Shepherdson, J.: Effective operations on partial recursive functions. Zeitschr. Msth. Logik u. Grundlagen. Math. 1, 310–317 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Moldestat, J., Stoltenberg-Hansen, V., Tucker, J.V.: Finite algorithmic procedures and computation theories. Mathematica Scandinavica 46, 77–94 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Moldestat, J., Stoltenberg-Hansen, V., Tucker, J.V.: Finite algorithmic procedures and inductive definability. Mathematica Scandinavica 46, 62–76 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer (1989)Google Scholar
  48. 48.
    Platek, R.A.: Foundations of Recursion Theory. Ph.D. thesis, Department of Mathematics, Stanford University (1966)Google Scholar
  49. 49.
    Sazonov, V.Y.: Degrees of parallelism in computation. In: Mazurkiewicz, A. (ed.) Proceedings of the 5th Symposium Mathematical Foundations of Computer Science (MFCS’76), Gdansk, September 1976Google Scholar
  50. 50.
    Smullyan, R.M.: Theory of Formal Systems, vol. 47. Annals of Mathematical Studies. Princeton University Press (1961)Google Scholar
  51. 51.
    Strong Jr., H.R.: Translating recursion equations into flowcharts. J. Comput. Syst. Sci. 5, 254–285 (1971)CrossRefzbMATHGoogle Scholar
  52. 52.
    Tucker, J.V., Zucker, J.I.: Program Correctness over Abstract Data Types, with Error-State Semantics, vol. 6. CWI Monographs. North Holland (1988)Google Scholar
  53. 53.
    Tucker, J.V., Zucker, J.I.: Computable functions and semicomputable sets on many-sorted algebras. In: Abramsky, S., Gabbay, D., Maibaum, T. (eds.) Handbook of Logic in Computer Science, vol. 5, pp. 317–523. Oxford University Press (2000)Google Scholar
  54. 54.
    Tucker, J.V., Zucker, J.I.: Abstract versus concrete computation on metric partial algebras. ACM Trans. Comput. Log. 5, 611–668 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Tucker, J.V., Zucker, J.I.: Continuity of operators on continuous and discrete time streams. Theoret. Comput. Sci. 412, 3378–3403 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Tucker, J.V., Zucker, J.I.: Generalizing computability to abstract algebras. In: Sommaruga, G., Strahm, T. (eds.) Turing’s Revolution: The Impact of his Ideas about Computability. Birkhauser/Springer, Basel (2015)Google Scholar
  57. 57.
    Weihrauch, K.: Computable Analysis: An Introduction. Springer (2000)Google Scholar
  58. 58.
    Jian, Xu, Zucker, Jeffery: First and second order recursion on abstract data types. Fundamenta Informaticae 21, 1–43 (2004)Google Scholar
  59. 59.
    Ye, Feng: Toward a constructive theory of unbounded linear operators. J. Symb. Log. 65, 357–370 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Zucker, J.I.: Review of [18]. Bull. Symb. Log. 8, 538–542 (2002)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Computing and SoftwareMcMaster UniversityHamiltonCanada

Personalised recommendations