Predicativity and Feferman

  • Laura Crosilla
Part of the Outstanding Contributions to Logic book series (OCTR, volume 13)


Predicativity is a notable example of fruitful interaction between philosophy and mathematical logic. It originated at the beginning of the 20th century from methodological and philosophical reflections on a changing concept of set. A clarification of this notion has prompted the development of fundamental new technical instruments, from Russell’s type theory to an important chapter in proof theory, which saw the decisive involvement of Kreisel, Feferman and Schütte. The technical outcomes of predicativity have since taken a life of their own, but have also produced a deeper understanding of the notion of predicativity, therefore witnessing the “light logic throws on problems in the foundations of mathematics.” [30, p. vii] Predicativity has been at the center of a considerable part of Feferman’s work: over the years he has explored alternative ways of explicating and analyzing this notion and has shown that predicative mathematics extends much further than expected within ordinary mathematics. The aim of this note is to outline the principal features of predicativity, from its original motivations at the start of the past century to its logical analysis in the 1950–1960s. The hope is to convey why predicativity is a fascinating subject, which has attracted Feferman’s attention over the years.


Impredicative definitions Predicativity given the natural numbers Vicious circle principle Invariance \(\Gamma _0\) 

2010 Mathematics Subject Classification

00A30 03A05. 


  1. 1.
    Benacerraf, P., Putnam, H.: Philosophy of Mathematics: Selected Readings. Cambridge University Press, Cambridge (1983)zbMATHGoogle Scholar
  2. 2.
    Bernays, P.: Sur the platonisme dans les mathématiques. L’Enseignement mathématique 34, 52–69 (1935). Translated in [1] with the title: On Platonism in MathematicsGoogle Scholar
  3. 3.
    Buchholz, W., Feferman, S., Pohlers, W., Sieg, W.: Iterated Inductive Definitions and Subsystems of Analysis. Springer, Berlin (1981)zbMATHGoogle Scholar
  4. 4.
    Cantini, A.: Una teoria della predicatività secondo Poincaré. Rivista di Filosofia 72, 32–50 (1981)Google Scholar
  5. 5.
    Cantini, A.: Paradoxes, self-reference and truth in the 20th century. In: Gabbay, D. (ed.) The Handbook of the History of Logic, pp. 5–875. Elsevier (2009)Google Scholar
  6. 6.
    Cantini, A., Fujimoto, K., Halbach, F.: Feferman and the Truth, this volume (2017)Google Scholar
  7. 7.
    Carnap, R.: Die Logizistische Grundlegung der Mathematik. Erkenntnis 2(1), 91–105 (1931). Translated in [1]. (Page references are to the translation)Google Scholar
  8. 8.
    Church, A.: A formulation of the simple theory of types. J. Symb. Logic 5, 56–68 (1940)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chwistek, L.: Über die Antinomien der Prinzipien der Mathematik. Mathematische Zeitschrift 14, 236–43 (1922)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Coquand, T.: Type theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2015)Google Scholar
  11. 11.
    Crosilla, L.: Constructive and intuitionistic ZF. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy (2014).
  12. 12.
    Crosilla, L.: Error and predicativity. In: Beckmann, A., Mitrana, V., Soskova, M. (eds.) Evolving Computability. Lecture Notes in Computer Science, vol. 9136, pp. 13–22. Springer International Publishing (2015)Google Scholar
  13. 13.
    Dummett, M.: Frege: Philosophy of Mathematics. Harvard University Press, Cambridge (1991)Google Scholar
  14. 14.
    Dummett, M.: What is mathematics about? In: George, A. (ed.) The Seas of Language, pp. 429–445. Oxford University Press (1993). Reprinted in [51], pp. 19–30Google Scholar
  15. 15.
    Ewald, W., Sieg, W.: David Hilbert’s Lectures on the Foundations of Arithmetic and Logic, 1917–1933. Springer, Heidelberg (2013)CrossRefzbMATHGoogle Scholar
  16. 16.
    Feferman, S.: Systems of predicative analysis. J. Symb. Logic 29, 1–30 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Feferman, S.: Predicative provability in set theory. Bull. Am. Math. Soc. 72, 486–489 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Feferman, S.: Persistent and invariant formulas for outer extensions. Compositio Math. 20, 29–52 (1968)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Feferman, S.: Systems of predicative analysis. II. Representations of ordinals. J. Symb. Logic 33, 193–220 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Feferman, S.: Predicatively reducible systems of set theory. In: Axiomatic Set Theory (Proceedings of Symposium Pure Mathematics, Vol. XIII, Part II, University California, Los Angeles, California, 1967), pp. 11–32. American Mathematical Society Providence, R.I (1974)Google Scholar
  21. 21.
    Feferman, S.: Impredicativity of the existence of the largest divisible subgroup of an abelian \(p\)-group. In: Model Theory and Algebra (A Memorial Tribute to Abraham Robinson). Lecture Notes in Mathematics, vol. 498, pp. 117–130. Springer, Berlin (1975)Google Scholar
  22. 22.
    Feferman, S.: A more perspicuous formal system for predicativity. In: Boffa, M., van Dalen, D., McAloon, K. (eds.) Logic Colloquium ’78’. North Holland, Amsterdam (1979)Google Scholar
  23. 23.
    Feferman, S.: Iterated inductive fixed-point theories: application to Hancock’s conjecture. In: Patras Logic Symposion (Patras, 1980). Studies in Logic Foundations Mathematics, vol. 109, pp. 171–196. North-Holland, Amsterdam-New York (1982)Google Scholar
  24. 24.
    Feferman, S.: Proof theory: a personal report. In: Appendix to the Second edition of [94], pp. 447–485 (1987)Google Scholar
  25. 25.
    Feferman, S.: Hilbert’s program relativized: proof-theoretical and foundational reductions. J. Symb. Logic 53(2), 364–384 (1988)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Feferman, S.: Weyl vindicated: Das Kontinuum seventy years later. In: Cellucci, C., Sambin, G. (eds.) Temi e prospettive della logica e della filosofia della scienza contemporanee, pp. 59–93. CLUEB, Bologna (1988)Google Scholar
  27. 27.
    Feferman, S.: What rests on what? The proof-theoretic analysis of mathematics. In: Czermak, J. (ed.) Proceedings of the 15th International Wittgenstein Symposium Philosophy of Mathematics, Part I. Verlag Hölder–Pichler– Tempsky, Vienna (1993)Google Scholar
  28. 28.
    Feferman, S.: Why a little bit goes a long way. Logical foundations of scientifically applicable mathematics. In: PSA 1992, Philosophy of Science Association (East Lansing), vol. 2, pp. 442–455 (1993). Reprinted in [30]Google Scholar
  29. 29.
    Feferman, S.: Kreisel’s unwinding program. In: Odifreddi, P. (ed.) Kreiseliana, pp. 247–273. About and Around Georg Kreisel, A K Peters (1996)Google Scholar
  30. 30.
    Feferman, S.: In the Light of Logic. Oxford University Press, New York (1998)Google Scholar
  31. 31.
    Feferman, S.: The significance of Hermann Weyl’s Das Kontinuum. In: Hendricks, V., Pedersen, S.A., Jørgense, K.F. (eds.) Proof Theory. Kluwer, Dordrecht (2000)Google Scholar
  32. 32.
    Feferman, S.: Comments on “Predicativity as a philosophical position” by G. Hellman, Rev. Int. Philos. 229(3), 313–323 (2004)Google Scholar
  33. 33.
    Feferman, S.: The development of programs for the foundations of mathematics in the first third of the 20th century. In: Petruccioli, S. (ed.) Storia della scienza. Istituto della Enciclopedia Italiana, vol. 8, pp. 112–121. Translated as Le scuole di filosofia della matematica (2004)Google Scholar
  34. 34.
    Feferman, S.: Predicativity. In: Shapiro, S. (ed.) Handbook of the Philosophy of Mathematics and Logic. Oxford University Press, Oxford (2005)Google Scholar
  35. 35.
    Feferman, S.: Conceptions of the continuum. Intellectica 51, 169–189 (2009)Google Scholar
  36. 36.
    Feferman, S. 2013 , Why a little bit goes a long way: predicative foundations of analysis. Unpublished notes dating from 1977-1981, with a new introduction. Retrieved from the address:\(\sim \)feferman/papers.htmlGoogle Scholar
  37. 37.
    Feferman, S., Hellman, G.: Predicative foundations of arithmetic. J. Philos. Logic 22, 1–17 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Feferman, S., Jäger, G.: Systems of explicit mathematics with non-constructive \(\mu \)-operator, Part I. Ann. Pure Appl. Logic 65(3), 243–263 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Feferman, S., Kreisel, G.: Persistent and invariant formulas relative to theories of higher order. Bull. Am. Math. Soc. 72, 480–485 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Feferman, S., Strahm, T.: The unfolding of non-finitist arithmetic. Ann. Pure Appl. Logic 104(1–3), 75–96 (2000)Google Scholar
  41. 41.
    Feferman, S., Strahm, T.: Unfolding finitist arithmetic. Rev. Symb. Logic 3(4), 665–689 (2010)Google Scholar
  42. 42.
    Ferreirós, J.: On arbitrary sets and ZFC. Bull. Symb. Logic (3) 2011Google Scholar
  43. 43.
    Friedman, H.: Systems of second order arithmetic with restricted induction, I, II (abstracts). J. Symb. Logic 41, 557–559 (1976)CrossRefGoogle Scholar
  44. 44.
    Gandy, R.O.: Review of [16]. Math. Rev. (1967)Google Scholar
  45. 45.
    Gödel, K.: The consistency of the axiom of choice and of the generalized continuum-hypothesis. Proc. Natl. Acad. Sci. U. S. A. 24, 556–557 (1938)CrossRefzbMATHGoogle Scholar
  46. 46.
    Gödel, K.: The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis with the Axioms of Set Theory, vol. 17. Princeton University Press (1940)Google Scholar
  47. 47.
    Gödel, K.: Russell’s mathematical logic. In: Schlipp, P.A. (ed.) The philosophy of Bertrand Russell, pp. 123–153. Northwestern University, Evanston and Chicago (1944). Reprinted in [1]. Page references are to the reprintingGoogle Scholar
  48. 48.
    Hellman, G.: Predicativism as a philosophical position. Revue Internationale de Philosophie 3, 295–312 (2004)Google Scholar
  49. 49.
    Hodes, H.T.: Why ramify? Notre Dame J. Formal Logic 56(2), 379–415 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Howard, W.A.: Some Proof Theory in the 1960’s. In: Odifreddi, P. (ed.) ‘Kreiseliana. About and Around Georg Kreisel’, pp. 274–288. A K Peters (1996)Google Scholar
  51. 51.
    Jacquette, D. (ed.): Philosophy of Mathematics: An Anthology. Wiley-Blackwell (2001)Google Scholar
  52. 52.
    Jäger, G.: Metapredicative and explicit Mahlo: a proof-theoretic perspective. In: R. Cori et al. (ed.) Proceedings of Logic Colloquium 2000. Association of Symbolic Logic Lecture Notes in Logic, vol. 19, pp. 272–293. AK Peters (2005)Google Scholar
  53. 53.
    Kleene, S.C.: Quantification of number-theoretic functions. Compositio Mathematica 14, 23–40 (1959)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Kreisel, G.: Ordinal logics and the characterization of informal concepts of proof. In: Proceedings of the International Congress of Mathematicians (August 1958), pp. 289–299. Gauthier–Villars, Paris (1958)Google Scholar
  55. 55.
    Kreisel, G.: La prédicativité. Bulletin de la Societé Mathématique de France 88, 371–391 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Kreisel, G.: Principles of proof and ordinals implicit in given concepts. In: Kino, R.E.V.A., Myhill, J. (eds.) Intuitionism and Proof Theory, pp. 489–516. North-Holland, Amsterdam (1970)Google Scholar
  57. 57.
    Linsky, B.: Propositional functions and universals in principia mathematica. Austr. J. Philos. 66(4), 447–460 (1988)CrossRefzbMATHGoogle Scholar
  58. 58.
    Maddy, P.: Naturalism in Mathematics. Oxford University Press, Oxford (1997)Google Scholar
  59. 59.
    Mancosu, P.: From Brouwer to Hilbert. The Debate on the Foundations of Mathematics in the 1920s. Oxford University Press, Oxford (1998)Google Scholar
  60. 60.
    Martin-Löf, P.: An intuitionistic theory of types: predicative part. In: Rose, H.E., Shepherdson, J.C. (eds.), Logic Colloquium 1973. North–Holland, Amsterdam (1975)Google Scholar
  61. 61.
    Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis, Naples (1984)zbMATHGoogle Scholar
  62. 62.
    Martin-Löf, P.: The Hilbert–Brouwer controversy resolved? In: van Atten, E.A. (ed.) One Hundred Years of Intuitionism (1907 – 2007), Publications des Archives Henri Poincaré, pp. 243–256 (2008)Google Scholar
  63. 63.
    Myhill, J.: The undefinability of the set of natural numbers in the ramified principia. In: Nakhnikian, G. (ed.) Bertrand Russell’s Philosophy, pp. 19–27. Duckworth, London (1974)Google Scholar
  64. 64.
    Nelson, E.: Predicative Arithmetic. Princeton University Press, Princeton (1986)CrossRefzbMATHGoogle Scholar
  65. 65.
    Parsons, C.: The impredicativity of induction. In: Detlefsen, M. (ed.) Proof, Logic, and Formalization, pp. 139–161. Routledge, London (1992)Google Scholar
  66. 66.
    Parsons, C.: Realism and the debate on impredicativity, 1917–1944. Association for Symbolic Logic (2002)Google Scholar
  67. 67.
    Parsons, C.: Mathematical Thought and Its Objects. Cambridge University Press, Cambridge (2008)Google Scholar
  68. 68.
    Pohlers, W.: Proof Theory: The First Step into Impredicativity, Universitext. Springer, Berlin (2009)zbMATHGoogle Scholar
  69. 69.
    Poincaré, H.: Les mathématiques et la logique. Revue de Métaphysique et Morale 13, 815–835 (1905)Google Scholar
  70. 70.
    Poincaré, H.: Les mathématiques et la logique. Revue de Métaphysique et de Morale 14, 17–34 (1906)Google Scholar
  71. 71.
    Poincaré, H.: Les mathématiques et la logique. Revue de Métaphysique et de Morale 14, 294–317 (1906)zbMATHGoogle Scholar
  72. 72.
    Poincaré, H.: La logique de l’infini. Revue de Métaphysique et Morale 17, 461–482 (1909)zbMATHGoogle Scholar
  73. 73.
    Poincaré, H.: La logique de l’infini. Scientia 12, 1–11 (1912)zbMATHGoogle Scholar
  74. 74.
    Ramsey, F.P.: Foundations of mathematics. Proc. Lond. Math. Soc.25 (1926). Reprinted in [75]Google Scholar
  75. 75.
    Ramsey, F.P.: Foundations of Mathematics and Other Logical Essays. Routledge and Kegan Paul (1931)Google Scholar
  76. 76.
    Rathjen, M.: The higher infinite in proof theory. In: Makowsky, J.A., Ravve, E.V. (eds.) Logic Colloquium ’95’. Springer Lecture Notes in Logic, vol. 11. Springer, New York, Berlin (1998)Google Scholar
  77. 77.
    Rathjen, M.: The realm of ordinal analysis. In: Sets and proofs (Leeds, 1997). London Mathematical Society Lecture Note Series, vol. 258, pp. 219–279. Cambridge Univ. Press, Cambridge (1999)Google Scholar
  78. 78.
    Rathjen, M.: Theories and ordinals in proof theory. Synthese 148(3), 719–743 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    Russell, B.: The Principles of Mathematics. Routledge (1903)Google Scholar
  80. 80.
    Russell, B.: ‘Les paradoxes de la logique’. Revue de métaphysique et de morale 14, 627–650 (1906)Google Scholar
  81. 81.
    Russell, B.: On some difficulties in the theory of transfinite numbers and order types. Proc. Lond. Math. Soc. 4, 29–53 (1906)MathSciNetzbMATHGoogle Scholar
  82. 82.
    Russell, B.: Mathematical logic as based on the theory of types. Am. J. Math. 30, 222–262 (1908)MathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    Russell, B.: Essays in Analysis. In: Lackey, D. (ed.). George Braziller, New York (1973)Google Scholar
  84. 84.
    Sacks, G.E.: Perspectives in Mathematical Logic. Higher recursion theory. Springer, Berlin (1990)Google Scholar
  85. 85.
    Schütte, K.: Eine Grenze für die Beweisbarkeit der Transfiniten Induktion in der verzweigten Typenlogik. Archiv für mathematische Logik und Grundlagenforschung 7, 45–60 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  86. 86.
    Schütte, K.: Predicative well–orderings. In: Crossley, J., Dummett, M. (eds.) Formal Systems and Recursive Functions. North–Holland, Amsterdam (1965)Google Scholar
  87. 87.
    Sieg, W.: Hilbert’s programs: 1917–1922. Bull. Symb. Logic 5(1), 1–44 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  88. 88.
    Simpson, S.G.: Partial realizations of Hilbert’s program. J. Symb. Logic 53(2), 349–363 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  89. 89.
    Simpson, S.G.: Subsystems of Second Order Arithmetic. Perspectives in Mathematical Logic. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  90. 90.
    Simpson, S.G.: Predicativity: the outer limits. In: Reflections on the foundations of mathematics (Stanford, CA, 1998). Lecture Notes Logic 15, Assoc. Symbol. Logic, Urbana, IL, 130–136 (2002)Google Scholar
  91. 91.
    Spector, C.: Recursive well-orderings. J. Symb. Logic 20, 151–163 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  92. 92.
    Stein, H.: Logos, logic and logistiké. In: Asprey, W., Kitcher, P. (eds.) History and Philosophy of Modern Mathematics, pp. 238–59. University of Minnesota, Minneapolis (1988)Google Scholar
  93. 93.
    Strahm, T.: Unfolding schematic systems, this volume (2017)Google Scholar
  94. 94.
    Takeuti, G.: Proof Theory, 2nd edn. North Holland, Amsterdam (1987)zbMATHGoogle Scholar
  95. 95.
    Wang, H.: The formalization of mathematics. J.Symb. Logic 19(4), 241–266 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  96. 96.
    Weaver, N.: Predicativity beyond \({\Gamma }_0\) (2005). Preprint submitted to the arXiv repository: arXiv:math/0509244
  97. 97.
    Weyl, H.: Das Kontinuum: Kritische Untersuchungen über die Grundlagen der Analysis, Veit, Leipzig. Translated in English, Dover Books on Mathematics, 2003. (Page references are to the translation) (1918)Google Scholar
  98. 98.
    Weyl, H.: Philosophy of Mathematics and Natural Science. Princeton University Press (1949). An expanded English version of Philosophie der Mathematik und Naturwissenschaft, München, Leibniz Verlag (1927)Google Scholar
  99. 99.
    Whitehead, A.N., Russell, B.: Principia Mathematica, 3 Vols. Cambridge University Press, Cambridge (1910, 1912, 1913); 2nd edn (1925) (Vol 1), 1927 (Vols 2, 3); abridged as Principia Mathematica to *56. Cambridge University Press, Cambridge (1962)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of PhilosophyReligion and History of Science, University of LeedsLeedsUK

Personalised recommendations