Advertisement

The Operational Penumbra: Some Ontological Aspects

  • Gerhard Jäger
Chapter
Part of the Outstanding Contributions to Logic book series (OCTR, volume 13)

Abstract

Feferman’s explicit mathematics and operational set theory are two important examples of families of theories providing an operational approach to mathematics. My aim here is to survey some central developments in these two fields, to sketch some of Fefeman’s main achievements, and to relate them to the work of others. The focus of my approach is on ontological questions.

Keywords

Explicit mathematics Operational set theory Operational approach Proof theory 

2010 MSC

MSC 03B30 03B40 03E20 03F03 

References

  1. 1.
    Beeson, M.J.: Foundations of Constructive Mathematics: Metamathematical Studies. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3/6. Springer, Berlin (1985)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill, New York (1967)zbMATHGoogle Scholar
  3. 3.
    Buchholz, W., Feferman, S., Pohlers, W., Sieg, W.: Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-theoretical Studies. Lecture Notes in Mathematics, vol. 897. Springer, Berlin (1981)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cantini, A.: Extending constructive operational set theory by impredicative principles. Mathematical Logic Quarterly 57(3), 299–322 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cantini, A., Crosilla, L.: Constructive set theory with operations. In: Andretta, A., Kearnes, K., Zambella, D. (eds.) Logic Colloquium 2004. Lecture Notes in Logic, vol. 29, pp. 47–83. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  6. 6.
    Cantini, A., Crosilla, L.: Elementary constructive operational set theory. In: Schindler, R. (ed.) Ways of Proof Theory. Ontos Mathematical Logic, vol. 2, pp. 199–240. De Gruyter, New York (2010)Google Scholar
  7. 7.
    Church, A.: A set of postulates for the foundation of logic. Ann. Math. 33(2), 346–366 (1932)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Church, A.: A set of postulates for the foundation of logic (second paper). Ann. Math. 34(4), 839–864 (1933)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Feferman, S.: A language and axioms for explicit mathematics. In: Crossley, J.N. (ed.) Algebra and Logic. Lecture Notes in Mathematics, vol. 450, pp. 87–139. Springer, Berlin (1975)CrossRefGoogle Scholar
  10. 10.
    Feferman, S.: Theories of finite type related to mathematical practice. In: Barwise, K.J. (ed.) Handbook of Mathematical Logic. Studies in Logic and the Foundations of Mathematics, vol. 90, pp. 913–9711. Elsevier, Amsterdam (1977)CrossRefGoogle Scholar
  11. 11.
    Feferman, S.: Recursion theory and set theory: a marriage of convenience. In: Fenstad, J.E., Gandy, R.O., Sacks, G.E. (eds.) Generalized Recursion Theory II, Oslo 1977. Studies in Logic and the Foundations of Mathematics, vol. 94, pp. 55–98. Elsevier, New York (1978)CrossRefGoogle Scholar
  12. 12.
    Feferman, S.: Constructive theories of functions and classes. In: Boffa, M., van Dalen, D., McAloon, K. (eds.) Logic Colloquium ’78. Studies in Logic and the Foundations of Mathematics, vol. 97, pp. 159–224. Elsevier, Amsterdam (1979)Google Scholar
  13. 13.
    Feferman, S.: Generalizing set-theoretical model theory and an analogue theory on admissible sets. In: Hintikka, J., Niiniluoto, I., Saarinen, E. (eds.) Essays on Mathematical and Philosophical Logic. Synthese Library, vol. 22, pp. 171–195. Reidel, Dordrecht (1979)CrossRefGoogle Scholar
  14. 14.
    Feferman, S.: Iterated inductive fixed-point theories: application to Hancock’s conjecture. In: Metakides, G. (ed.) Patras Logic Symposion. Studies in Logic and the Foundations of Mathematics, vol. 109, pp. 171–196. Elsevier, New York (1982)CrossRefGoogle Scholar
  15. 15.
    Feferman, S.: Monotone inductive definitions. In: Troelstra, A.S., van Dalen, D. (eds.) The L.E.J. Brouwer Centenary Symposium. Studies in Logic and the Foundations of Mathematics, vol. 110, pp. 77–89. Elsevier, New York (1982)Google Scholar
  16. 16.
    Feferman, S.: In the light of logic; chapter 13: Weyl vindicated: Das Kontinuum seventy years later. Logic and Computation in Philosophy. Oxford University Press, Oxford (1998)Google Scholar
  17. 17.
    Feferman, S.: The significance of Hermann Weyl’s Das Kontinuum. In: Hendricks, V.F., Pedersen, S.A., Jørgensen, K.F. (eds.) Proof Theory: History and Philosophical Significance. Synthese Library Series, pp. 179–194. Kluwer Academic Publishers, Dordrecht (2000)CrossRefGoogle Scholar
  18. 18.
    Feferman, S.: Notes on operational set theory, I. generalization of “small” large cardinals in classical an admissible set theory, Technical notes, Stanford University (2001)Google Scholar
  19. 19.
    Feferman, S.: Operational set theory and small large cardinals. Inf. Comput. 207, 971–979 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Feferman, S.: On the strength of some semi-constructive theories. In: Berger, U., Diener, H., Schuster, P., Seisenberger, M. (eds.) Logic, Construction, Computation. Ontos Mathematical Logic, vol. 3, pp. 201–225. De Gruyter, New York (2012)Google Scholar
  21. 21.
    Feferman, S.: An operational theory of sets and classes, Technical Notes, Stanford University (2013)Google Scholar
  22. 22.
    Feferman, S.: The operational perspective: three routes. In: Kahle, R., Strahm, T., Studer, T. (eds.), Advances in Proof Theory. Progress in Computer Science and Applied Logic. Birkhäuser, Basel (2016)Google Scholar
  23. 23.
    Feferman, S., Jäger, G.: Systems of explicit mathematics with non-constructive \(\mu \)-operator. part I. Ann. Pure Appl. Logic 65(13), 243–263 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Feferman, S., Jäger, G., Strahm, T.: Foundations of explicit mathematics, in preparationGoogle Scholar
  25. 25.
    Glaß, T., Strahm, T.: Systems of explicit mathematics with non-constructive \(\mu \)-operator and join. Ann. Pure Appl. Logic 82(2), 193–219 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Glaß, T., Rathjen, M., Schlüter, A.: On the proof-theoretic strength of monotone induction in explicit mathematics. Ann. Pure Appl. Logic 85(1), 1–46 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hinman, P.G.: Recursion-Theoretic Hierarchies. Perspectives in Mathematical Logic, vol. 9. Springer, Berlin (1978)Google Scholar
  28. 28.
    Jäger, G.: A well-ordering proof for Feferman’s theory \( T_0\). Archiv für mathematische Logik und Grundlagenforschung 23(1), 65–77 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Jäger, G.: Induction in the elementary theory of types and names. In: Börger, E., Kleine Büning, H., Richter, M.M. (eds.) CSL ’87. Lecture Notes in Computer Science, vol. 329, pp. 118–128. Springer, Berlin (1987)CrossRefGoogle Scholar
  30. 30.
    Jäger, G.: Applikative Theorien und explizite Mathematik. Vorlesungsskript. Universität Bern, Bern (1996)Google Scholar
  31. 31.
    Jäger, G.: Power types in explicit mathematics?. J. Symb. Logic 62(4), 1142–1146 (1997)Google Scholar
  32. 32.
    Jäger, G.: On Feferman’s operational set theory \( OST\). Ann. Pure Appl. Logic 150(1–3), 19–39 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Jäger, G.: Full operational set theory with unbounded existential quantification and power set. Ann. Pure Appl. Logic 160(1), 33–52 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Jäger, G.: Operations, sets and classes. In: Glymour, C., Wei, W., Westerståhl, D. (eds.), Logic, Methodology and Philosophy of Science - Proceedings of the Thirteenth International Congress, pp. 74–96. College Publications, Norcross (2009)Google Scholar
  35. 35.
    Jäger, G.: Operational closure and stability. Ann. Pure Appl. Logic 164(7–8), 813–821 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Jäger, G.: Operational set theory with classes?. Scientific Talk (2013)Google Scholar
  37. 37.
    Jäger, G.: Relativizing operational set theory. Bull. Symb. Logic 22, 332–352 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Jäger, G., Krähenbühl, J.: \({\Sigma }^1_1\) choice in a theory of sets and classes. In: Schindler, R. (ed.) Ways of Proof Theory. Ontos Mathematical Logic, vol. 2, pp. 199–240. De Gruyter, New York (2010)Google Scholar
  39. 39.
    Jäger, G., Pohlers, W.: Eine beweistheoretische Untersuchung von \((\Delta ^1_2\text{-}\sf CA) + (\sf BI\sf )\) und verwandter Systeme. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse 1, 1–28 (1982)Google Scholar
  40. 40.
    Jäger, G., Probst, D.: The Suslin operator in applicative theories: Its proof-theoretic analysis via ordinal theories. Ann. Pure Appl. Logic 162(8), 647–660 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Jäger, G., Strahm, T.: Upper bounds for metapredicative Mahlo in explicit mathematics and admissible set theory. J. Symb. Logic 66(2), 935–958 (2001)CrossRefzbMATHGoogle Scholar
  42. 42.
    Jäger, G., Strahm, T.: The proof-theoretic strength of the Suslin operator in applicative theories. In: Sieg, W., Sommer, R., Talcott, C. (eds.), Reflections on the Foundations of Mathematics: Essays in Honor of olomon Feferman, Lecture Notes in Logic, Association for Symbolic Logic, vol. 15, pp. 270–292 (2002)Google Scholar
  43. 43.
    Jäger, G., Strahm, T.: Reflections on reflection in explicit mathematics. Ann. Pure Appl. Logic 136(1–2), 116–133 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Jäger, G., Zumbrunnen, R.: About the strength of operational regularity. In: Berger, U., Diener, H., Schuster, P., Seisenberger, M. (eds.) Logic, Construction, Computation. Ontos Mathematical Logic, vol. 3, pp. 305–324. De Gruyter, New York (2012)Google Scholar
  45. 45.
    Jäger, G., Zumbrunnen, R.: Explicit mathematics and operational set theory: some ontological comparisons. Bull. Symb. Logic 20(3), 275–292 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Jäger, G., Kahle, R., Studer, T.: Universes in explicit mathematics. Ann. Pure Appl. Logic 109(3), 141–162 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Kahle, R.: Applikative Theorien und Frege-Strukturen, Ph.D. thesis, Institut für Informatik und angewandte Mathematik, Universität Bern (1997)Google Scholar
  48. 48.
    Marzetta, M.: Predicative theories of types and names, Ph.D. thesis, Institut für Informatik und angewandte Mathematik, Universität Bern (1994)Google Scholar
  49. 49.
    Minari, P.: Axioms for universes, Handwritten Notes?Google Scholar
  50. 50.
    Rathjen, M.: Monotone inductive definitions in explicit mathematics. J. Symb. Logic 61(1), 125–146 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Rathjen, M.: Explicit mathematics with the monotone fixed point principle. J. Symb. Logic 63(2), 509–542 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Rathjen, M.: Explicit mathematics with the monotone fixed point principle. ii: models. J. Symb. Logic 64(2), 517–550 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Rathjen, M.: Explicit mathematics with monotone inductive definitions: a survey. In: Sieg, W., Sommer, R., Talcott, C. (eds.) Reflections on the Foundations of Mathematics: Essays in Honor of Solomon Feferman, Lecture Notes in Logic, Association for Symbolic Logic, vol. 15, pp. 329–346 (2002)Google Scholar
  54. 54.
    Rathjen, M.: Relativized ordinal analysis: the case of power Kripke-Platek set theory. Ann. Pure Appl. Logic 165(1), 316–339 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Rathjen, M.: Power Kripke-Platek set theory and the axiom of choice, Annals of Pure and Applied Logic (submitted)Google Scholar
  56. 56.
    Sato, K.: A new model construction by making a detour via intuitionistic theories II: interpretability lower bound of Feferman’s explicit mathematics \( {T}_0\). Ann. Pure Appl. Logic 166(7–8), 800–835 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Sato, K., Zumbrunnen, R.: A new model construction by making a detour via intuitionistic theories I: operational set theory without choice is \({\prod } _{1}\)-equivalent to \( KP\). Ann. Pure Appl. Logic 166(2), 121–186 (2015)Google Scholar
  58. 58.
    Scott, D.S.: Identity and existence in formal logic. In: Fourman, M., Mulvey, C., Scott, D. (eds.), Applications of Sheaves. Lecture Notes in Mathematics, vol. 753, pp. 660–696. Springer, Berlin (1979)Google Scholar
  59. 59.
    Simpson, S.G.: Subsystems of Second Order Arithmetic. Perspectives in Logic, Association for Symbolic Logic, 2nd edn. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  60. 60.
    Takahashi, S.: Monotone inductive definitions in a constructive theory of functions and classes. Ann. Pure Appl. Logic 42(3), 255–297 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, I. Studies in Logic and the Foundations of Mathematics, vol. 121. Elsevier, Amsterdam (1988)zbMATHGoogle Scholar
  62. 62.
    Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, II. Studies in Logic and the Foundations of Mathematics, vol. 123. Elsevier, Amsterdam (1988)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institut für InformatikUniversität BernBernSwitzerland

Personalised recommendations