Advertisement

From Choosing Elements to Choosing Concepts: The Evolution of Feferman’s Work in Model Theory

  • Wilfrid Hodges
Chapter
Part of the Outstanding Contributions to Logic book series (OCTR, volume 13)

Abstract

When Solomon Feferman began his research with Alfred Tarski in the early 1950s, model theory was still in process of becoming a distinct part of mathematical logic. Although Feferman’s doctoral thesis was not in model theory, his interests included model theory from the start, and he published a paper in the field roughly once every six years throughout his career. His earliest work in model theory is recognised in the name ‘Feferman-Vaught theorem’, which stems from some very detailed bare-hands work on sums and products of structures. During the 1960s and 1970s he worked on applications of many-sorted interpolation theorems, in particular to derive results relating implicit and explicit definability in various contexts. In the 1980s he edited with Jon Barwise a monumental collection of essays on ‘Model-theoretic logics’. In more recent papers he reflected on the conceptual basis of model theory from a historical point of view.

Keywords

Solomon Feferman Model theory Feferman-Vaught theorem Interpolation theorem 

2010 Subject Classification

03C99 

References

  1. 1.
    Barwise, J., Feferman, S. (eds.): Model-Theoretic Logics. Perspectives in Mathematical Logic. Springer, New York (1985)Google Scholar
  2. 2.
    Beth, Evert W.: On Padoa’s method in the theory of definition. Nederl. Akad. Wetensch. Proc. Ser. A (= Indagationes Mathematicae 15) 56, 330–339 (1953)Google Scholar
  3. 3.
    Craig, W.: Review of [2]. J. Symb. Log. 21(2), 194–195 (1956)CrossRefGoogle Scholar
  4. 4.
    Craig, W.: Linear reasoning: a new form of the Herbrand-Gentzen theorem. J. Symb. Log. 22(3), 250–268 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. J. Symb. Log. 22(3), 269–285 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Derakhshan, J., Macintyre, A.: Some supplements to Feferman-Vaught related to the model theory of adeles. Ann. Pure Appl. Log. 165(11), 1639–1679 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Doner, J.E., Mostowski, A., Tarski, A.: The elementary theory of well-ordering – a metamathematical study. In: Macintyre, A., Pacholski, L., Paris, J. (eds.) Logic Colloquium 77, pp. 1–54. North-Holland, Amsterdam (1978)Google Scholar
  8. 8.
    Ehrenfeucht, A.: Application of games to some problems of mathematical logic. Bull. de l’Acad. Pol. Sci. Cl 3(5), 35–37 (1957)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Eklof, P.C.: Applications to algebra, in [1] pp. 423–441Google Scholar
  10. 10.
    Evans, David M., Hodges,W., Hodkinson, Ian M.: Automorphisms of bounded abelian groups. Forum Math. 3, 523–542 (1991)Google Scholar
  11. 11.
    Feferman, A.B., Feferman, S.: Alfred Tarski: Life and Logic. Cambridge University Press, Cambridge (2004)Google Scholar
  12. 12.
    Feferman, S.: Some recent work of Ehrenfeucht and Fraisse. In: Proceedings of the Summer Institute of Symbolic Logic, Cornell Ithaca (1957), Communications Research Division, pp. 201–209. Institute for Defense Analyses, Princeton NJ, (1960)Google Scholar
  13. 13.
    Feferman, S.: Lectures on proof theory. In: Proceedings of the Summer School in Logic, Leeds 1967, Lecture Notes in Mathematics 70. pp. 1–107. Springer, Berlin (1968)Google Scholar
  14. 14.
    Feferman, S.: Persistent and invariant formulas for outer extensions. Compos. Math. 20, 29–52 (1968)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Feferman, S.: Ordinals and functionals in proof theory. Actes du Congrès Internationale des Mathématiciens 1, 229–233. Nice (1970)Google Scholar
  16. 16.
    Feferman, S.: Infinitary properties, local functors, and systems of ordinal functions. In: Hodges, w. (ed.) Conference in Mathematical Logic: London 1970, Lecture Notes in Mathematics 255, pp. 63–97. Springer, Berlin (1972)Google Scholar
  17. 17.
    Feferman, S.: Applications of many-sorted interpolation theorems. In: Henkin, L. et al., (eds.) Proceedings of the Tarski Symposium. pp. 205–223. American Mathematical Society, Providence RI (1974)Google Scholar
  18. 18.
    Feferman, S.: ‘Two notes on abstract model theory. I. Properties invariant on the range of definable relations between structures. Fundam. Math. 82, 153–165 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Feferman, S.: Two notes on abstract model theory. II. Languages for which the set of valid sentences is semi-invariantly implicitly definable. Fundam. Math. 89, 111–130 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Feferman, S.: Generalizing set-theoretical model theory and an analogue theory on admissible sets. In: Hintikka, J., Niiniluoto, I., Saarinen, E. (eds.) Essays on Mathematical and Philosophical Logic: Proceedings of the Fourth Scandinavian Logic Symposium and of the First Soviet-Finnish Logic Conference, Jyväskylä, Finland, June 29–July 6, 1976, pp. 171–195. Reidel, Dordrecht (1979)Google Scholar
  21. 21.
    Feferman, S.: Three conceptual problems that bug me. Draft lecture notes for 7th Scandinavian Logic Symposium, Uppsala, August 18–20. (1996). math.stanford.edu/\(\sim \)feferman/papers/conceptualprobs.pdfGoogle Scholar
  22. 22.
    Feferman, S.: Logic, logics, and logicism. Notre Dame J. Form. Log. 40(1), 31–54 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Feferman, S.: Ah, Chu!. In: JFAK, Essays Dedicated to Johan Van Benthem on the Occasion of his 50th Birthday (1999) (compact disc; the paper is available at math.stanford.edu/\(\sim \)feferman/papers)Google Scholar
  24. 24.
    Feferman, S.: Tarski’s conception of logic. Ann. Pure Appl. Log. 126(1), 5–13 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Feferman, S.: What kind of logic is Independence-Friendly logic?. In: Randall E. Auxier., Hahn, L.E. (eds.) The Philosophy of Jaakko Hintikka, vol. XXX, pp. 453–469. Library of Living Philosophers, Open Court, Chicago IL (2006)Google Scholar
  26. 26.
    Feferman, S.: Tarski’s conceptual analysis of semantical notions. In: Patterson, D. (ed.) New Essays on Tarski and Philosophy, pp. 72–93. Oxford University Press, Oxford (2008)CrossRefGoogle Scholar
  27. 27.
    Feferman, S.: Harmonious logic: Craig’s interpolation theorem and its descendants. Synthese 164(3), 341–357 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Feferman, S.: Andrzej Mostowski: An Appreciation. In: Ehrenfeucht, A., Marek, V.W., Srebrny, M. (eds.) Andrzej Mostowski and Foundational Studies, pp. 388–392. IOS Press, Amsterdam (2008)Google Scholar
  29. 29.
    Feferman, S.: Set-theoretical invariance criteria for logicality. Notre Dame J. Form. Log. 51(1), 3–20 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Feferman, S.: Which quantifiers are logical? A combined semantical and inferential criterion. Preprint 2013, math.stanford.edu/\(\sim \)feferman/papers/ WhichQsLogical(text).pdfGoogle Scholar
  31. 31.
    Feferman, S.: A fortuitous year with Leon Henkin. In: Manzano, M., Sain, I., Alonso, E. (eds.) The Life and Work of Leon Henkin, pp. 35–40. Birkhäuser, Heidelberg (2014)Google Scholar
  32. 32.
    Feferman, S., Kreisel, G.: Persistent and invariant formulas relative to theories of higher order. Bull. Am. Math. Soc. 72(3), 480–485 (1966)Google Scholar
  33. 33.
    Feferman, S., Vaught, R.: The first order properties of products of algebraic systems. Fundam. Math. 47, 57–103 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Felscher, I.: Model composition in model-checking, Doctoral Dissertation, Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, (2014)Google Scholar
  35. 35.
    Fraïssé, R.: Sur quelques classifications des relations, basées sur des isomorphismes restreints. II. Applications aux relations d’ordre, et construction d’exemples montrant que ces classifications sont distinctes. In: Publ. Sci. de l’Université d’Alger, Série A (Mathematiques), vol. 2, pp. 273–295. (1957)Google Scholar
  36. 36.
    Gaifman, H.: Operations on relational structures, functors and classes. I. In: Henkin, L. et al., (eds.) Proceedings of the Tarski Symposium. pp. 21–39. American Mathematical Society, Providence RI (1974)Google Scholar
  37. 37.
    Gurevich, Y.: Monadic Second-Order Theories, in [1] pp. 479–506Google Scholar
  38. 38.
    Hintikka, J.: Intellectual autobiography. In: Randall E. Auxier., Hahn, L.E. (eds.) The Philosophy of Jaakko Hintikka. Library of Living Philosophers vol. XXX, pp. 3–84. Open Court, Chicago IL (2006)Google Scholar
  39. 39.
    Hintikka, J.: Distributive Normal Forms in the Calculus of Predicates, Acta Philosophica Fennica 6. Philosophical Society of Finland, Helsinki (1953)Google Scholar
  40. 40.
    Hodges, W.: Tarski on Padoa’s Method: a test case for understanding logicians of other traditions. In: Chakraborti, Mihir K. et al., (eds.) Logic, Navya-Nyāya and Applications: Homage to Bimal Krishna Matilal, pp. 155–169. College Publications, London (2008)Google Scholar
  41. 41.
    Krajewski, S., Srebrny, M.: On the life and work of Andrzej Mostowski (1913–1975). In: Ehrenfeucht, A., Marek, V.W., Srebrny, M. (eds.) Andrzej Mostowski and Foundational Studies, pp. 3–14. IOS Press, Amsterdam (2008)Google Scholar
  42. 42.
    Kreisel, G.: Set theoretic problems suggested by the notion of potential totality, in Infinitistic Methods. Pergamon Press, Warsaw (1959)Google Scholar
  43. 43.
    Łoś, Jerzy: On the extending of models (I). Fundam. Math. 42, 38–54 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Lyndon, Roger C.: An interpolation theorem in the predicate calculus. Pac. J. Math. 9, 129–142 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Lyndon, Roger C.: Properties preserved under homomorphism. Pac. J. Math. 9, 143–154 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Makkai, M.: An application of a method of Smullyan to logics on admissible sets. Bull. Pol. Acad. Sci. 17, 341–346 (1969)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Makowsky, J.A.: Algorithmic uses of the Feferman-Vaught Theorem. Ann. Pure Appl. Log. 126(1), 159–213 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Mal’tsev, Anatoliĭ I.: Model’niye sootvestvija, Izvestiya Rossiiskoi Akademii Nauk Seriya Matematicheskaya 23(3), pp. 313–336; trans. as ‘Model correspondences.: In Mal’cev, A.I. (ed.) The Metamathematics of Algebraic Systems: Collected Papers 1936–1967, ed. and trans. Benjamin Franklin Wells III, pp. 66–94. North-Holland, Amsterdam (1971)Google Scholar
  49. 49.
    Marker, D.: A model theoretic proof of Feferman’s preservation theorem. Notre Dame J. Form. Log. 25(3), 213–216 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Mostowski, A.: On direct products of theories. J. Symb. Log. 17(1), 1–31 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Mostowski, A., Tarski, A.: Arithmetical classes and types of well ordered systems. Preliminary report. Bull. Am. Math. Soc. 55, 65 (1949)Google Scholar
  52. 52.
    Otto, M.: An interpolation theorem. Bull. Symb. Log. 6(4), 447–462 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Padoa, A.: Essai d’une théorie algébrique des nombres entiers, précédé d’une introduction logique à une théorie déductive quelconque. In: Bibliothèque du Congrès international de philosophie, Paris, 1900, vol. 3, Armand Colin, Paris 1902, pp. 309–365; translated in part as ‘Logical introduction to any deductive theory’ in From Frege to Gödel, ed. Jean van Heijenoort, pp. 118–123. Harvard University Press, Cambridge Mass. (1967)Google Scholar
  54. 54.
    Stern, J.: A new look at the interpolation problem. J. Symb. Log. 40(1), 1–13 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Tarski, A.: Some notions and methods on the borderline of algebra and metamathematics. In: Proceedings of the International Congress of Mathematicians: Cambridge, Massachusetts. vol. 1, pp. 705–720. American Mathematical Society, Providence RI (1952)Google Scholar
  56. 56.
    Ulsen, Paul van.:E. W. Beth als logicus, Doctoral Dissertation, Institute for Logic, Language and Computation, Amsterdam (2000); ILLC Dissertation Series DS–2000–04Google Scholar
  57. 57.
    Väänänen, J.: Set-Theoretic Definability of Logics, in [1] pp. 599–643Google Scholar
  58. 58.
    Zucker, J.I.: The adequacy problem for classical logic. J. Philos. Log. 7(1), 517–535 (1978)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Herons BrookSticklepathEngland

Personalised recommendations